A261174 Number of multigraphs on 4 unlabeled nodes with n edges where the edges can be of two colors.
1, 2, 9, 30, 90, 248, 650, 1560, 3560, 7680, 15786, 31076, 58905, 107768, 191180, 329664, 554038, 909558, 1461655, 2302950, 3563482, 5422392, 8124040, 11997648, 17482295, 25156872, 35779092, 50330364, 70072640, 96615760, 131999058, 178786960, 240186182, 320179470
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A050531 (case of 3 nodes).
Programs
-
Mathematica
Needs["Combinatorica`"];n = 4; nn = 25; CoefficientList[Series[PairGroupIndex[SymmetricGroup[n], s] /.Table[s[i] -> 1/(1 - x^i)^2, {i, 1, Binomial[n, 2]}], {x, 0, nn}], x]
-
PARI
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))} G(n)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->(1-x^i)^2)); s/n!} { Vec(G(4) + O(x^36)) } \\ Andrew Howroyd, Apr 18 2021
Formula
G.f.: (1 - 2*x + 5*x^2 + 2*x^3 + 10*x^4 + 12*x^5 + 32*x^6 + 20*x^7 + 56*x^8 + 20*x^9 + 32*x^10 + 12*x^11 + 10*x^12 + 2*x^13 + 5*x^14 - 2*x^15 + x^16)/((1 - x)^12*(1 + x)^4*(1 + x^2)^2*(1 + x + x^2)^4). - Andrew Howroyd, Apr 18 2021
Extensions
Terms a(26) and beyond from Andrew Howroyd, Apr 18 2021