cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261174 Number of multigraphs on 4 unlabeled nodes with n edges where the edges can be of two colors.

Original entry on oeis.org

1, 2, 9, 30, 90, 248, 650, 1560, 3560, 7680, 15786, 31076, 58905, 107768, 191180, 329664, 554038, 909558, 1461655, 2302950, 3563482, 5422392, 8124040, 11997648, 17482295, 25156872, 35779092, 50330364, 70072640, 96615760, 131999058, 178786960, 240186182, 320179470
Offset: 0

Views

Author

Geoffrey Critzer, Aug 10 2015

Keywords

Crossrefs

Cf. A050531 (case of 3 nodes).

Programs

  • Mathematica
    Needs["Combinatorica`"];n = 4; nn = 25; CoefficientList[Series[PairGroupIndex[SymmetricGroup[n], s] /.Table[s[i] -> 1/(1 - x^i)^2, {i, 1, Binomial[n, 2]}], {x, 0, nn}], x]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->(1-x^i)^2)); s/n!}
    { Vec(G(4) + O(x^36)) } \\ Andrew Howroyd, Apr 18 2021

Formula

G.f.: (1 - 2*x + 5*x^2 + 2*x^3 + 10*x^4 + 12*x^5 + 32*x^6 + 20*x^7 + 56*x^8 + 20*x^9 + 32*x^10 + 12*x^11 + 10*x^12 + 2*x^13 + 5*x^14 - 2*x^15 + x^16)/((1 - x)^12*(1 + x)^4*(1 + x^2)^2*(1 + x + x^2)^4). - Andrew Howroyd, Apr 18 2021

Extensions

Terms a(26) and beyond from Andrew Howroyd, Apr 18 2021