A261176 Minimum value of (1/2)*Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} Sum_{l=1..n} gcd(b(i,j),b(k,l)) * ((i-k)^2+(j-l)^2) for an n X n matrix b filled with the integers 1 to n^2.
0, 9, 126, 802, 3158, 10040, 25464, 58837, 123422, 238203, 429467, 733923, 1200319, 1912928, 2945116, 4369570, 6338678, 9053512, 12622814, 17359779, 23503546, 31347788, 41161317
Offset: 1
Examples
a(2)=9, because the matrix ((1 2)(3 4)) has Delacorte Number D(1,2) + D(1,3) + D(1,4) + D(2,3) + D(2,4) + D(3,4) = gcd(1,2)*(1^2 + 0^2) + gcd(1,3)*(0^2 + 1^2) + gcd(1,4)*(1^2 + 1^2) + gcd(2,3)*(1^2 + 1^2) + gcd(2,4)*(0^2 + 1^2) + gcd(3,4)*(1^2 + 0^2) = 1*1 + 1*1 + 1*2 + 1*2 + 2*1 + 1*1 = 9. Putting (2,4) in a row or column gives the minimum value of the matrix, whereas putting this pair in one of the diagonals gives the maximum. a(3)=126, because no arrangement of the matrix elements exists that produces a smaller Delacorte Number than e.g. ((1 2 4)(3 6 8)(5 9 7)).
Links
- Al Zimmermann's Programming Contests, Delacorte Numbers, Description, October 2014.
- Al Zimmermann's Programming Contests, Delacorte Numbers, Final Report, January 2015.
- The New York Community Trust: George T. Delacorte.
- Arch D. Robison, Computing Delacorte Numbers with Julia, January 21, 2015.
Comments