A261192 a(0) = 2; for n>0, a(n) = smallest prime p such that p > a(n-1) and p is congruent to n modulo prime(n).
2, 3, 5, 13, 53, 71, 97, 109, 179, 193, 271, 383, 419, 587, 659, 673, 811, 1433, 1543, 1627, 2221, 2357, 4051, 4339, 4919, 5651, 5783, 6619, 6983, 7877, 8053, 11969, 12739, 12911, 14629, 15233, 15287, 15737, 18131, 18743, 20627, 21163, 21943, 22963, 23011, 23291, 25717, 26633, 27031, 27743
Offset: 0
Keywords
Examples
a(4) = 53 because prime(4) = 7, 53 == 4 (mod 7) and 53 is the smallest such prime greater than a(3) = 13.
Links
- Ivan N. Ianakiev and Robert G. Wilson v, Table of n, a(n) for n = 0..100000
Programs
-
Mathematica
f[n_] := f[n] = Block[{k = Prime@ n, q = Prime@ n}, While[k + n <= f[n - 1] || ! PrimeQ[k + n], k += q]; k + n]; f[0] = 2; Array[f, 50, 0]
Comments