cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261241 One half of numbers representable in at least two different ways as sums of four nonvanishing cubes. See A259060 for these numbers and their representations.

Original entry on oeis.org

3213, 3950, 4807, 5796, 6929, 8218, 9675, 11312, 13141, 15174, 17423, 19900, 22617, 25586, 28819, 32328, 36125, 40222, 44631, 49364, 54433, 59850, 65627, 71776, 78309, 85238, 92575, 100332, 108521, 117154, 126243, 135800, 145837, 156366
Offset: 0

Views

Author

Wolfdieter Lang, Aug 12 2015

Keywords

Comments

See A259060. There may be other numbers with this property.

References

  • W. SierpiƄski, 250 Problems in Elementary Number Theory, American Elsevier Publ. Comp., New York, PWN-Polish Scientific Publishers, Warszawa, 1970, Problem 227, p. 20 and p. 110.

Crossrefs

Cf. A259060.

Programs

  • Magma
    [(n+9)*(2*n^2 + 36*n + 357): n in [0..50]]; // Vincenzo Librandi, Aug 13 2015
    
  • Magma
    I:=[3213,3950,4807,5796]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Aug 13 2015
  • Mathematica
    CoefficientList[Series[(3213 - 8902 x + 8285 x^2 - 2584 x^3)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 13 2015 *)

Formula

a(n) = (n+9)*(2*n^2 + 36*n + 357), n >= 0.
O.g.f.: (3213 - 8902*x + 8285*x^2 - 2584*x^3)/(1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). - Vincenzo Librandi, Aug 13 2015