A261275 Number of set partitions C_t(n) of {1,2,...,t} into at most n parts, with an even number of elements in each part distinguished by marks; triangle C_t(n), t>=0, 0<=n<=t, read by rows.
1, 0, 1, 0, 2, 3, 0, 4, 10, 11, 0, 8, 36, 48, 49, 0, 16, 136, 236, 256, 257, 0, 32, 528, 1248, 1508, 1538, 1539, 0, 64, 2080, 6896, 9696, 10256, 10298, 10299, 0, 128, 8256, 39168, 66384, 74784, 75848, 75904, 75905, 0, 256, 32896, 226496, 475136, 586352, 607520, 609368, 609440, 609441
Offset: 0
Examples
Triangle starts: 1; 0, 1; 0, 2, 3; 0, 4, 10, 11; 0, 8, 36, 48, 49; 0, 16, 136, 236, 256, 257; 0, 32, 528, 1248, 1508, 1538, 1539; 0, 64, 2080, 6896, 9696, 10256, 10298, 10299; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- John R. Britnell and Mark Wildon, Bell numbers, partition moves and the eigenvalues of the random-to-top shuffle in Dynkin Types A, B and D, arXiv:1507.04803 [math.CO], 2015.
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(x^j*multinomial(n, n-i*j, i$j)/j!*add( binomial(i, 2*k), k=0..i/2)^j*b(n-i*j, i-1), j=0..n/i)))) end: T:= n-> (p-> seq(add(coeff(p, x, j), j=0..i), i=0..n))(b(n$2)): seq(T(n), n=0..12); # Alois P. Heinz, Aug 13 2015
-
Mathematica
CC[t_, n_] := Sum[2^(t - m)*StirlingS2[t, m], {m, 0, n}]; Table[CC[t, n], {t, 0, 12}, {n, 0, t}] // Flatten (* Second program: *) multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[x^j*multinomial[n, Join[{n - i*j}, Table[i, j]]]/j!*Sum[Binomial[i, 2*k], {k, 0, i/2}]^j*b[n - i*j, i - 1], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Sum[Coefficient[p, x, j], {j, 0, i}], {i, 0, n} ] ][b[n, n]]; Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 07 2017, after Alois P. Heinz *)
Formula
G.f.: sum(t>=0, n>=0, C_t(n)x^t/t!y^n) = exp(y/2 (exp(2*x)-1))/(1-y).
C_t(n) = Sum_{i=0..n} A075497(t,i).
Comments