A261296 Smaller of pairs (m, n), such that the difference of their squares is a cube and the difference of their cubes is a square.
6, 384, 4374, 5687, 24576, 17576, 27783, 64350, 93750, 354375, 279936, 113750, 363968, 166972, 370656, 705894, 263736, 1572864, 1124864, 1778112, 3187744, 4225760, 4118400, 3795000, 3188646, 4145823, 4697550, 1111158, 730575, 6000000, 8171316, 2413071, 8573750
Offset: 1
Keywords
Examples
10^3 - 6^3 = 784 = 28^2, 10^2 - 6^2 = 64 = 4^3. 8954^3 - 5687^3 = 730719^2, 8954^2 - 5687^2 = 363^3.
References
- H. E. Dudeney, 536 Puzzles & Curious Problems, Charles Scribner's Sons, New York, 1967, pp 56, 268, #177
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..302
- Gianlino, in reply to Smci, Solution method for "integers with the difference between their cubes is a square, and v.v.", Yahoo! answers, 2011
Programs
-
Python
def cube(z, p): iscube=False y=int(pow(z, 1/p)+0.01) if y**p==z: iscube=True return iscube for n in range (1, 10**5): for m in range(n+1, 10**5): a=(m-n)*(m**2+m*n+n**2) b=(m-n)*(m+n) if cube(a, 2)==True and cube(b, 3)==True: print (n, m)
Extensions
Added a(6) and more terms from Chai Wah Wu, Aug 17 2015
Comments