A261322 Non-repunit elements of A261020 in nonincreasing order.
21, 31, 41, 51, 61, 71, 81, 91, 421, 931, 3311, 5111, 5511, 7711, 8421, 9731, 9911, 311111, 444111, 711111, 777111, 993311, 8811111, 51111111, 55551111, 91111111, 93333311, 99311111, 99991111, 441111111, 6666611111, 7111111111, 9333311111, 411111111111, 555111111111, 771111111111, 777777111111, 911111111111
Offset: 1
Examples
{1, 3, 9} forms a group under multiplication in Z/mZ for m = 13 and m = 26 (and no other values of m). m is the sum of digits of a term, so we can solve 9*x + 3*y + 1*z in {13, 26} for (x, y, z) >= (1, 1, 1). Solutions are (x, y, z) in {(1, 1, 1), (2, 2, 2), ..., (1, 1, 14)}. A solution (x, y, z) denotes a term starting with x nines, then followed by y threes, and then by z ones.
Links
- David A. Corneth, Table of n, a(n) for n = 1..72
Crossrefs
Cf. A261020.
Comments