A261329 Euler transform of Pell numbers.
1, 1, 3, 8, 23, 62, 175, 477, 1319, 3602, 9851, 26779, 72726, 196724, 531157, 1430144, 3842911, 10303055, 27570786, 73637306, 196333303, 522584286, 1388786089, 3685169795, 9764703347, 25838430572, 68282175170, 180221449469, 475102410065, 1251038486529
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, Asymptotics of the Euler transform of Fibonacci numbers, arXiv:1508.01796 [math.CO], Aug 07 2015.
- Eric Weisstein's World of Mathematics, Pell Number
- Wikipedia, Pell number
Programs
-
Mathematica
nmax=40; Pell[0]=0; Pell[1]=1; Pell[n_]:=Pell[n] = 2*Pell[n-1] + Pell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^Pell[k], {k, 1, nmax}], {x, 0, nmax}], x]
-
SageMath
# uses[EulerTransform from A166861] a = BinaryRecurrenceSequence(2, 1) b = EulerTransform(a) print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020
Formula
G.f.: Product_{k>=1} 1/(1-x^k)^(A000129(k)).
a(n) ~ (1+sqrt(2))^n * exp(-1/8 + 2^(1/4)*sqrt(n) + s) / (2^(11/8) * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} 1/(((sqrt(2)+1)^k - (sqrt(2)-1)^k - 2)*k) = 0.17615706029370539578355193664752741450665073523628663099586621933373...
G.f.: exp(Sum_{k>=1} x^k/(k*(1 - 2*x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018