cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A358369 Euler transform of 2^floor(n/2), (A016116).

Original entry on oeis.org

1, 1, 3, 5, 12, 20, 43, 73, 146, 250, 475, 813, 1499, 2555, 4592, 7800, 13761, 23253, 40421, 67963, 116723, 195291, 332026, 552882, 932023, 1544943, 2585243, 4267081, 7094593, 11662769, 19281018, 31575874, 51937608, 84753396, 138772038, 225693778, 368017636
Offset: 0

Views

Author

Peter Luschny, Nov 17 2022

Keywords

Crossrefs

Sequences that can be represented as a EulerTransform(BinaryRecurrenceSequence()) include A000009, A000041, A000712, A001970, A002513, A010054, A015128, A022567, A034691, A111317, A111335, A117410, A156224, A166861, A200544, A261031, A261329, A358449.

Programs

  • Maple
    BinaryRecurrenceSequence := proc(b, c, u0:=0, u1:=1) local u;
    u := proc(n) option remember; if n < 2 then return [u0, u1][n + 1] fi;
    b*u(n - 1) + c*u(n - 2) end; u end:
    EulerTransform := proc(a) local b;
    b := proc(n) option remember; if n = 0 then return 1 fi; add(add(d * a(d),
    d = NumberTheory:-Divisors(j)) * b(n-j), j = 1..n) / n end; b end:
    a := EulerTransform(BinaryRecurrenceSequence(0, 2, 1)): seq(a(n), n=0..36);
  • Python
    from typing import Callable
    from functools import cache
    from sympy import divisors
    def BinaryRecurrenceSequence(b:int, c:int, u0:int=0, u1:int=1) -> Callable:
        @cache
        def u(n: int) -> int:
            if n < 2:
                return [u0, u1][n]
            return b * u(n - 1) + c * u(n - 2)
        return u
    def EulerTransform(a: Callable) -> Callable:
        @cache
        def b(n: int) -> int:
            if n == 0:
                return 1
            s = sum(sum(d * a(d) for d in divisors(j)) * b(n - j)
                for j in range(1, n + 1))
            return s // n
        return b
    b = BinaryRecurrenceSequence(0, 2, 1)
    a = EulerTransform(b)
    print([a(n) for n in range(37)])
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 2, 1)
    a = EulerTransform(b)
    print([a(n) for n in range(37)])
    

A261330 Euler transform of Pell-Lucas numbers.

Original entry on oeis.org

1, 2, 9, 30, 106, 348, 1153, 3698, 11798, 37034, 115294, 355202, 1086080, 3294912, 9931019, 29745296, 88597104, 262508288, 774073787, 2272321666, 6642701371, 19342768210, 56117550874, 162247236638, 467563212923, 1343273262184, 3847866714452, 10991864363660
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; cPell[0]=2; cPell[1]=2; cPell[n_]:=cPell[n] = 2*cPell[n-1] + cPell[n-2]; CoefficientList[Series[Product[1/(1-x^k)^cPell[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1-x^k)^(A002203(k)).
a(n) ~ (1+sqrt(2))^n * exp(-1 + 2^(-3/2) + 2*sqrt(n) + s) / (2 * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} = 2/(((1+sqrt(2))^k + 2/(1 + (1+sqrt(2))^k) - 3)*k) = 0.40371233206538058741995064489690066306587648488344483...

A261331 Expansion of Product_{k>=1} (1+x^k)^(A000129(k)).

Original entry on oeis.org

1, 1, 2, 7, 18, 52, 143, 396, 1083, 2971, 8087, 21981, 59533, 160857, 433467, 1165542, 3126951, 8372451, 22374172, 59684669, 158941356, 422582925, 1121814072, 2973703449, 7871754065, 20809918535, 54943916547, 144891525408, 381647503607, 1004149670985
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; Pell[0]=0; Pell[1]=1; Pell[n_]:=Pell[n] = 2*Pell[n-1] + Pell[n-2]; CoefficientList[Series[Product[(1+x^k)^Pell[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (1+sqrt(2))^n * exp(-1/8 + 2^(1/4)*sqrt(n) + s) / (2^(11/8) * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} (-1)^(k+1)/(((sqrt(2)+1)^k - (sqrt(2)-1)^k - 2)*k) = -0.1149083344289588668149210160138124159112948627968378825745674888...
G.f.: exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - 2*x^k - x^(2*k)))). - Ilya Gutkovskiy, May 30 2018

A261332 Expansion of Product_{k>=1} (1+x^k)^(A002203(k)).

Original entry on oeis.org

1, 2, 7, 26, 83, 278, 894, 2848, 8947, 27844, 85774, 262090, 794802, 2393874, 7165622, 21327412, 63146545, 186063052, 545783103, 1594268778, 4638773567, 13447773510, 38850645513, 111874844146, 321166890522, 919314145044, 2624198013317, 7471158542418
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 15 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; cPell[0]=2; cPell[1]=2; cPell[n_]:=cPell[n] = 2*cPell[n-1] + cPell[n-2]; CoefficientList[Series[Product[(1+x^k)^cPell[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (1+sqrt(2))^n * exp(-1 + 2^(-3/2) + 2*sqrt(n) + s) / (2 * sqrt(Pi) * n^(3/4)), where s = Sum_{k>=2} = 2*(-1)^(k+1)/(((1+sqrt(2))^k + 2/(1 + (1+sqrt(2))^k) - 3)*k) = -0.2731939535370496116124191192900280854879921353977...

A308448 Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - 2*x^k - x^(2*k)))/k.

Original entry on oeis.org

1, 1, 3, 6, 14, 28, 64, 135, 300, 653, 1458, 3223, 7240, 16228, 36678, 83025, 188910, 430730, 985752, 2260866, 5199612, 11982591, 27673826, 64027215, 148399514, 344490100, 800886300, 1864461210, 4346031950, 10142519585, 23696421808, 55420499295, 129742683174, 304014091125
Offset: 1

Views

Author

Ilya Gutkovskiy, May 27 2019

Keywords

Comments

Inverse Euler transform of A000129.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(j-1-a(i), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> combinat[fibonacci](n)+b(n, n-1):
    seq(a(n), n=1..34);  # Alois P. Heinz, May 19 2022
  • Mathematica
    nmax = 34; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/(1 - 2 x^k - x^(2 k))]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 40; s = ConstantArray[0, nmax]; Do[s[[j]] = j*Fibonacci[j, 2] - Sum[s[[d]]*Fibonacci[j - d, 2], {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 10 2019 *)

Formula

-1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000129.
a(n) ~ (1 + sqrt(2))^n/n. - Vaclav Kotesovec, May 28 2019
"CHK" (necklace, identity, unlabeled) transform of A000045. - Alois P. Heinz, May 19 2022
Showing 1-5 of 5 results.