cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A034691 Euler transform of powers of 2 [1,2,4,8,16,...].

Original entry on oeis.org

1, 1, 3, 7, 18, 42, 104, 244, 585, 1373, 3233, 7533, 17547, 40591, 93711, 215379, 493735, 1127979, 2570519, 5841443, 13243599, 29953851, 67604035, 152258271, 342253980, 767895424, 1719854346, 3845443858
Offset: 0

Views

Author

Keywords

Comments

This is the number of different hierarchical orderings that can be formed from n unlabeled elements: these are divided into groups and the elements in each group are then arranged in an "unlabeled preferential arrangement" or "composition" as in A000079. - Thomas Wieder and N. J. A. Sloane, Jun 10 2003
From Gus Wiseman, Mar 03 2016: (Start)
The original Sloane-Wieder definition, "To obtain a hierarchical ordering we partition the elements into unlabeled nonempty subsets and form a composition of each subset," [arXiv:math/0307064] has two possible meanings. The first possible meaning is that we should (1) choose a set partition pi of {1...n} and (2) for each block of pi choose a composition of the number of elements. In this case the correct number of such structures would evidently be counted by A004211 which differs from a(n) for n > 2.
The other possible meaning is that after we have done (1) and (2) above we (3) "forget" the choice of pi. We will have produced a collection M of multisets of compositions. The span of M (its set of distinct elements) is correctly counted by A034691 and it seems that non-isomorphic hierarchical orderings of unlabeled sets are nothing more than multisets of compositions. This discovery is due to Wieder. (End)
The asymptotic formula in the article by N. J. A. Sloane and Thomas Wieder, "The Number of Hierarchical Orderings" (Theorem 3) is incorrect (a multiplicative factor of 1.397... is missing, see my formula below). - Vaclav Kotesovec, Sep 08 2014
Number of partitions of n into 1 sort of 1, 2 sorts of 2's, 4 sorts of 3's, ..., 2^(k-1) sorts of k's, ... . - Joerg Arndt, Sep 09 2014
Also number of normal multiset partitions of weight n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Mar 03 2016

Examples

			The normal multiset partitions for a(4) = 18: {{1111},{1222},{1122},{1112},{1233},{1223},{1123},{1234},{1,111},{1,122},{1,112},{1,123},{11,11},{11,12},{12,12},{1,1,11},{1,1,12},{1,1,1,1}}
		

Crossrefs

Cf. A034899, A075729, A247003, A004211, A104500 (Euler transform), A290222 (Multiset transform).

Programs

  • Maple
    oo := 101: mul( 1/(1-x^j)^(2^(j-1)),j=1..oo): series(%,x,oo): t1 := seriestolist(%); A034691 := n-> t1[n+1];
    with(combstruct); SetSeqSetU := [T, {T=Set(S), S=Sequence(U,card >= 1), U=Set(Z,card >=1)},unlabeled]; seq(count(SetSeqSetU,size=j),j=1..12);
    # Alternative, uses EulerTransform from A358369:
    a := EulerTransform(BinaryRecurrenceSequence(2, 0)):
    seq(a(n), n = 0..27); # Peter Luschny, Nov 17 2022
  • Mathematica
    nn = 30; b = Table[2^n, {n, 0, nn}]; CoefficientList[Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}],  x] (* T. D. Noe, Nov 21 2011 *)
    Table[SeriesCoefficient[E^(Sum[x^k/(1 - 2*x^k)/k, {k, 1, n}]), {x, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Sep 08 2014 *)
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    allnmsp[0]={};allnmsp[1]={{{1}}};allnmsp[n_Integer]:=allnmsp[n]=Join[allnmsp[n-1],List/@allnorm[n],Join@@Function[ptn,Append[ptn,#]&/@Select[allnorm[n-Length[Join@@ptn]],OrderedQ[{Last[ptn],#}]&]]/@allnmsp[n-1]];
    Apply[SequenceForm,Select[allnmsp[4],Length[Join@@#]===4&],{2}] (* to construct the example *)
    Table[Length[Complement[allnmsp[n],allnmsp[n-1]]],{n,1,8}] (* Gus Wiseman, Mar 03 2016 *)
  • PARI
    A034691(n,l=1+O('x^(n+1)))={polcoeff(1/prod(k=1,n,(l-'x^k)^2^(k-1)),n)} \\ Michael Somos, Nov 21 2011, edited by M. F. Hasler, Jul 24 2017
    
  • SageMath
    # uses[EulerTransform from A166861]
    a = BinaryRecurrenceSequence(2, 0)
    b = EulerTransform(a)
    print([b(n) for n in range(30)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: 1 / Product_{n>=1} (1-x^n)^(2^(n-1)).
Recurrence: a(n) = (1/n) * Sum_{m=1..n} a(n-m)*c(m) where c(m) = A083413(m).
a(n) ~ c * 2^n * exp(sqrt(2*n)) / (sqrt(2*Pi) * exp(1/4) * 2^(3/4) * n^(3/4)), where c = exp( Sum_{k>=2} 1/(k*(2^k-2)) ) = 1.3976490050836502... (see A247003). - Vaclav Kotesovec, Sep 08 2014

A092119 EULER transform of A001511.

Original entry on oeis.org

1, 1, 3, 4, 10, 13, 26, 35, 66, 88, 150, 202, 331, 442, 688, 919, 1394, 1848, 2716, 3590, 5174, 6796, 9589, 12542, 17440, 22680, 31055, 40208, 54420, 70096, 93772, 120256, 159380, 203436, 267142, 339573, 442478, 560050, 724302, 913198, 1173375, 1473622
Offset: 0

Views

Author

Vladeta Jovovic, Mar 29 2004

Keywords

Comments

From Gary W. Adamson, Feb 11 2010: (Start)
Given A000041, P(x) = A(x)/A(x^2) with P(x) = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...),
A(x) = (1 + x + 3x^2 + 4x^3 + 10x^4 + 13x^5 + ...),
A(x^2) = (1 + x^2 + 3x^4 + 4x^6 + 10x^8 + ...), where A092119 = (1, 1, 3, 4, 10, ...) = Euler transform of the ruler sequence, A001511. (End)
Let M = triangle A173238 as an infinite lower triangular matrix. Then A092119 = lim_{n->infinity} M^n. Let P(x) = polcoeff A000041 = (1 + x + 2x^2 + 3x^3 + ...), and A(x) = polcoeff A092119. Then P(x) = A(x) / A(x^2), an example of a conjectured infinite set of operations (cf. A173238). - Gary W. Adamson, Feb 13 2010

Crossrefs

Cf. A000041. - Gary W. Adamson, Feb 11 2010
Cf. A173241.

Programs

  • Maple
    # Uses EulerTransform from A358369.
    t := EulerTransform(n -> padic[ordp](2*n, 2)):
    seq(t(n), n = 0..41); # Peter Luschny, Nov 18 2022
  • Mathematica
    m = 42;
    1/Product[QPochhammer[x^(2^k)], {k, 0, Log[2, m]//Ceiling}] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Jan 14 2020, after Joerg Arndt *)
  • PARI
    N=66; x='x+O('x^N); /* that many terms */
    gf=1/prod(e=0,ceil(log(N)/log(2)),eta(x^(2^e)));
    Vec(gf) /* show terms */ /* Joerg Arndt, Jun 21 2011 */

Formula

G.f.: 1/Product_{k>=0} P(x^(2^k)) where P(x) = Product_{k>=1} (1 - x^k). - Joerg Arndt, Jun 21 2011

A219224 G.f.: exp( Sum_{n>=1} A005063(n)*x^n/n ), where A005063(n) = sum of squares of primes dividing n.

Original entry on oeis.org

1, 0, 2, 3, 3, 11, 10, 26, 32, 51, 90, 117, 198, 283, 417, 610, 890, 1284, 1848, 2615, 3716, 5217, 7289, 10222, 14158, 19514, 26882, 36805, 50131, 68428, 92466, 125128, 168093, 225775, 302171, 402876, 536730, 711601, 942009, 1243513, 1638395, 2152828, 2823004
Offset: 0

Views

Author

Paul D. Hanna, Nov 15 2012

Keywords

Comments

Euler transform of A061397. - Peter Luschny, Nov 21 2022

Examples

			G.f.: A(x) = 1 + 2*x^2 + 3*x^3 + 3*x^4 + 11*x^5 + 10*x^6 + 26*x^7 + 32*x^8 +...
where
log(A(x)) = 4*x^2/2 + 9*x^3/3 + 4*x^4/4 + 25*x^5/5 + 13*x^6/6 + 49*x^7/7 + 4*x^8/8 + 9*x^9/9 + 29*x^10/10 + 121*x^11/11 + 13*x^12/12 + 169*x^13/13 + 53*x^14/14 + 34*x^15/15 +...+ A005063(n)*x^n/n +...
		

Crossrefs

Programs

  • Maple
    # The function EulerTransform is defined in A358369.
    a := EulerTransform(n -> ifelse(isprime(n), n, 0)):
    seq(a(n), n = 0..42); # Peter Luschny, Nov 21 2022
  • Mathematica
    a[n_] := SeriesCoefficient[ Exp[ Sum[ DivisorSum[k, Boole[PrimeQ[#]] * #^2&] * x^k/k, {k, 1, n+1}]], {x, 0, n}]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jul 11 2017, from PARI *)
  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n+1,sumdiv(k,d,isprime(d)*d^2)*x^k/k)+x*O(x^n)),n)}
    for(n=0,50,print1(a(n),", "))

A111335 Let qf(a,q) = Product_{j>=0} (1 - a*q^j); g.f. is qf(q^3,q^4)/qf(q,q^4).

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 1, 0, -1, 0, 2, 1, -1, -1, 1, 2, -1, -2, 1, 3, 1, -3, -1, 3, 1, -3, -2, 4, 4, -3, -4, 3, 5, -3, -7, 2, 9, 0, -9, -1, 10, 3, -11, -5, 12, 8, -11, -10, 10, 12, -11, -15, 11, 19, -7, -21, 6, 24, -5, -28, 1, 31, 4, -33, -8, 36, 12, -38, -18, 40, 27, -40, -33, 40, 39, -40, -49, 38, 60, -34, -67, 30, 75, -25, -87, 18, 98
Offset: 0

Views

Author

N. J. A. Sloane, Nov 09 2005

Keywords

Crossrefs

Cf. A111330.

Programs

  • Maple
    # Uses EulerTransform from A358369.
    a := EulerTransform(BinaryRecurrenceSequence(0, -1)):
    seq(a(n), n=0..86); # Peter Luschny, Nov 17 2022
  • PARI
    {a(n)=if(n<0, 0, polcoeff( prod(k=0,n\2, (1-x^(2*k+1))^(-(-1)^k), 1+x*O(x^n)), n))} /* Michael Somos, Nov 11 2005 */
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, -1)
    a = EulerTransform(b)
    print([a(n) for n in range(87)]) # Peter Luschny, Nov 17 2022

Formula

Euler transform of period 4 sequence [1, 0, -1, 0, ...]. - Michael Somos, Nov 10 2005
G.f.: Product_{k>0} (1-x^(2k-1))^((-1)^k). - Michael Somos, Nov 11 2005
G.f.: exp( Sum_{k >= 1} 1/(k*(x^k + x^(-k))) ). - Peter Bala, Sep 28 2023

A117410 Expansion of q^(-5/24) * eta(q^2)^3 / eta(q) in powers of q.

Original entry on oeis.org

1, 1, -1, 0, -1, -2, 1, -1, -1, 0, 1, 1, -1, 1, 0, 2, 1, 0, 0, -1, 2, 1, 0, -1, 0, -1, 0, -1, 1, 1, -3, 0, -1, -1, -1, 1, 0, 0, 0, -1, -2, 0, 1, 0, 1, 0, 1, 0, 0, -1, 2, -1, 0, 1, 1, 3, 0, -1, 0, 1, -1, 0, 1, 0, 0, 2, 0, 1, -1, 0, -2, -1, 1, 0, 0, -1, 0, 0, 1, -1, 0, -1, -1, -1, 0, -2, -1, 0, 2, 1, -2, 0, 1, -1, 0, -2, -1, 1, -1, 1, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Michael Somos, Mar 13 2006

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x - x^2 - x^4 - 2*x^5 + x^6 - x^7 - x^8 + x^10 + x^11 - x^12 + x^13 + ...
G.f. = q^5 + q^29 - q^53 - q^101 - 2*q^125 + q^149 - q^173 - q^197 + q^245 + ...
		

Crossrefs

Cf. A107034.

Programs

  • Maple
    # Uses EulerTransform from A358369.
    a := EulerTransform(BinaryRecurrenceSequence(0, 1, -2)):
    seq(a(n), n = 0..104); # Peter Luschny, Nov 17 2022
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[x^2]^3 / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Jan 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 / eta(x + A), n))};
    
  • PARI
    q='q+O('q^99); Vec(eta(q^2)^3/eta(q)) \\ Altug Alkan, Apr 17 2018
    
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(0, 1, -2)
    a = EulerTransform(b)
    print([a(n) for n in range(105)]) # Peter Luschny, Nov 17 2022

Formula

Expansion of psi(x)^2 * chi(-x) = f(-x)^2 / chi(-x)^3 = f(-x)^5 / phi(-x)^3 = f(-x^2)^2 / chi(-x) = f(-x^2)^3 / f(-x) = psi(x) * f(-x^2) = f(x) * f(-x^4) = phi(-x)^2 / chi(-x)^5 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jan 31 2015
Euler transform of period 2 sequence [ 1, -2, ...].
Given A = A0 + A1 + A2 + A3 + A4 is the 5-section, then 0 = A3 * A1^2 - A2 * A4^2.
Given A = A0 + A1 + A2 + A3 + A4 + A5 + A6 is the 7-section, then 0 = A0*A6 + A1*A5 + A2*A4 + 4*A3^2, A3 = x^10 * A(x^49).
G.f.: Product_{k>0} (1 + x^k) * (1 - x^(2*k))^2.
A107034(n) = (-1)^n * a(n).

A358449 Euler transform of (0, 1, -2, 4, -8, 16, ...), (cf. A122803).

Original entry on oeis.org

1, 1, -1, 3, -4, 4, -2, 2, 2, -26, 80, -168, 351, -749, 1485, -2779, 5134, -9314, 16318, -27522, 44596, -68484, 96148, -113172, 77125, 122309, -750801, 2411307, -6424162, 15607886, -35846784, 79201548, -170009469, 356687423, -734287141, 1487086199, -2967980133
Offset: 0

Views

Author

Peter Luschny, Nov 17 2022

Keywords

Crossrefs

Programs

  • Maple
    # Uses EulerTransform from A358369.
    a := EulerTransform(BinaryRecurrenceSequence(-2, 0)): seq(a(n), n=0..36);
  • Sage
    # uses[EulerTransform from A166861]
    b = BinaryRecurrenceSequence(-2, 0)
    a = EulerTransform(b)
    print([a(n) for n in range(37)])
Showing 1-6 of 6 results.