A001511 The ruler function: exponent of the highest power of 2 dividing 2n. Equivalently, the 2-adic valuation of 2n.
1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 6, 1, 2, 1, 3, 1, 2, 1, 4, 1
Offset: 1
A173241 Euler transform of A051064, the ruler function sequence for k=3.
1, 1, 2, 4, 6, 9, 16, 22, 33, 51, 71, 100, 147, 199, 275, 384, 515, 692, 944, 1242, 1645, 2186, 2847, 3706, 4848, 6231, 8019, 10330, 13153, 16729, 21305, 26864, 33858, 42658, 53366, 66668, 83277, 103378, 128200, 158846, 195895, 241237, 296860, 363796, 445285, 544465, 663520
Offset: 0
Keywords
Comments
Examples
Equals 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)*(1-x^6)^2*(1-x^7)*...); where in (1-x)^k, k = A051064: (1, 1, 2, 1, 1, 2, 1, 1, 3, ...).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Programs
-
PARI
N=66; x='x+O('x^N); /* that many terms */ gf=1/prod(e=0, ceil(log(N)/log(3)), eta(x^(3^e))); Vec(gf) /* show terms */ /* Joerg Arndt, Jun 21 2011 */
Formula
G.f.: 1/Product_{k>=0} P(x^(3^k)) where P(x)=Product_{k>=1} (1-x^k). - Joerg Arndt, Jun 21 2011
(1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, ...).
Extensions
More terms from Joerg Arndt, Jun 21 2011
A173238 Triangle by columns, A000041 in every column shifted down twice for columns > 0.
1, 1, 2, 1, 3, 1, 5, 2, 1, 7, 3, 1, 11, 5, 2, 1, 15, 7, 3, 1, 22, 11, 5, 2, 1, 30, 15, 7, 3, 1, 42, 22, 11, 5, 2, 1, 56, 30, 15, 7, 3, 1, 77, 42, 22, 11, 5, 2, 1, 101, 56, 30, 15, 7, 3, 1, 135, 77, 42, 22, 11, 5, 2, 1, 176, 101, 56, 30, 15, 7, 3, 1
Offset: 0
Comments
Row sums = A024786 starting with A024786(2): (1, 1, 3, 4, 8, 11, 19, 26, ...) = number of 2's in all partitions of n.
Let the triangle = M. Then Lim_{n->inf} M^n = (1, 1, 3, 4, 10, 13, 26, ...), the left-shifted vector considered as a sequence = A092119, the Euler transform of the ruler sequence, A001511.
Given P(x) = polcoeff A000041 = (1 + x + 2x^2 + 3x^3 + 5x^4 + 7x^5 + ...), then P(x) = A(x)/A(x^2), where A(x) = polcoeff A092119: (1 + x + 3x^2 + 4x^3 + ...).
Conjectures: Given the infinite set of triangles with A000041 in every column shifted down 0, 1, 2, ... n times, row sums of n-th triangle (where A173238 = 2nd in the set) = the numbers of n's in all partitions of n. E.g., row sums = of A173238 = A024786, the numbers of 2's in all partitions of n.
Similarly, row sums of triangle A173239 with columns >0 shifted down thrice = numbers of 3's in all partitions of n, and so on. Refer to comments in A000041 regarding the numbers of 1's in partitions of n.
...
Second conjecture: Given the infinite set of analogous triangles with columns shifted down 2, 3, 4, ..., k times, we let such triangles = T(k) and perform lim_{n->inf} T^n(k), obtaining the left-shifted vectors considered as sequences. The conjecture states that the infinite set of such left-shifted vectors = the Euler transform of the infinite set of Ruler functions starting with the ruler function for k=2 = A001511: (1, 2, 1, 3, 1, 2, 1, ...)
To obtain the k-th ruler functions, begin with the natural numbers, 1,...2,...3,...4,...5,...6,...7,...8,...9,...; then for k = 2 we get A001511: 1,...2,...1,...3,...1,...2,...1,...4,...1,...; by finding the highest exponent of k dividing n, then adding 1. Similarly, for k = 2, we obtain A051064: 1,...1,...2,...1,...1,...2,...1,...1,...3,...
Next, we obtain the Euler transforms of the ruler functions (e.g., Euler transform of A001511 = A092119: (1, 1, 3, 4, 10, 13, 26, ...), noting that A092119 is lim_{n->inf} A173238^n, the left-shifted vector.
...
Third conjecture: Let P(x) = polcoeff A000041 = (1 + x + 2x^2 + 3x^3 + ...), and A(k)(x) = the Euler transform of k-th ruler sequence, (k=2,3,...). Then P(x) = A(k)(x) / A(k)(x^k).
Examples: for k=2, A(x) = A092119: (1, 1, 3, 4, 10, 13, ...), then P(x) = (1 + x + 2x^2 + 3x^3 + ...) = (1 + x + 3x^2 + 4x^3 + ...) / (1 + x^2 + 3x^4 + 4x^6 + 10x^8 + ...). For k=3 relating to triangle A173238, the left-shifted vector = the Euler transform of A051064 = A(x) for k=3, then P(x) = A(x) / A(x^3).
The conjecture extends the analogous conclusions to all k.
From Gary W. Adamson, Feb 25 2010: (Start)
Proof of second conjecture received from Helmut Prodinger 02/28/10 with a summary by R. J. Mathar:
Consider Product_{n>=0} z^(t^n)/(1-z^(t^n)) = Sum_{k>=1} (1+v_t(k))z^k where v_t(n) is the number of trailing zeros in the t-ary expansion of n, and its Euler transform A(z) = product_{k >= 1} 1/(1-z^k)^{1+v_t(k)}, then A(z)/A(z^t) = product_{k >= 1} 1/(1-z^k) is the partition generating function.
Here is the proof: A(z)/A(z^t) = Product_{k>=1} (1-z^(tk))^(1+v_t(k))/(1-z^k)^(1+v_t(k))
= Product_{k>=1} (1-z^(tk))^(v_t(tk))/(1-z^k)^(1+v_t(k))
= Product_{k>=1} (1-z^k)^(v_t(k))/(1-z^k)^(1+v_t(k)) (*)
= Product_{k>=1} 1/(1-z^k)
as desired. Notice that for (*), that v_t(n)=0 if n is not divisible by t. [Helmut Prodinger, hproding(AT)sun.ac.za, Feb 28 2010] (End)
Examples
First few rows of the triangle: 1; 1; 2, 1; 3, 1; 5, 2, 1; 7, 3, 1; 11, 5, 2, 1; 15, 7, 3, 1; 22, 11, 5, 2, 1; 30, 15, 7, 3, 1; 42, 22, 11, 5, 2, 1; 56, 30, 15, 7, 3, 1; 77, 42, 22, 11, 5, 2, 1; 101, 56, 30, 15, 7, 3, 1; 135, 77, 42, 22, 11, 5, 2, 1; 176, 101, 56, 30, 15, 7, 3, 1; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..9999 (rows 0 <= n <= 199, flattened)
Programs
-
Mathematica
Table[PartitionsP[n - 2 k], {n, 17}, {k, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 23 2021 *)
Formula
T(n,k) = A000041(n-2*k) for k=0..floor(n/2).
Extensions
a(24), a(25) corrected by Georg Fischer, Nov 23 2021
A327736 Expansion of 1 / (1 - Sum_{i>=1, j>=0} x^(i*2^j)).
1, 1, 3, 6, 16, 35, 85, 195, 465, 1081, 2549, 5962, 14016, 32847, 77119, 180866, 424466, 995753, 2336497, 5481712, 12861904, 30176671, 70802913, 166120289, 389761751, 914476925, 2145596677, 5034105820, 11811287658, 27712248159, 65019931641, 152553127471, 357928110743
Offset: 0
Keywords
Comments
Invert transform of A001511.
Programs
-
Mathematica
nmax = 32; CoefficientList[Series[1/(1 - Sum[x^(2^k)/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]] + 1}]), {x, 0, nmax}], x] a[0] = 1; a[n_] := a[n] = Sum[IntegerExponent[2 k, 2] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 32}]
Formula
G.f.: 1 / (1 - Sum_{k>=0} x^(2^k) / (1 - x^(2^k))).
a(0) = 1; a(n) = Sum_{k=1..n} A001511(k) * a(n-k).
A373295 Expansion of 1/Product_{k>=1} (1 - x^k)^(valuation(k,4) + 1).
1, 1, 2, 3, 6, 8, 13, 18, 29, 39, 57, 77, 112, 148, 205, 271, 373, 485, 649, 841, 1116, 1431, 1865, 2379, 3080, 3896, 4979, 6268, 7961, 9953, 12524, 15585, 19505, 24135, 29984, 36943, 45678, 56007, 68841, 84080, 102912, 125164, 152449, 184756, 224184, 270691, 327094, 393675
Offset: 0
Keywords
Programs
-
PARI
my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(valuation(k, 4)+1)))
Formula
G.f.: A(x) = 1/Product_{i>=1, j>=0} (1 - x^(i * 4^j)).
Let A(x) be the g.f. of this sequence, and P(x) be the g.f. of A000041, then P(x) = A(x)/A(x^4).
A373296 Euler transform of A055457.
1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 51, 69, 96, 129, 175, 235, 312, 410, 539, 700, 913, 1173, 1508, 1923, 2450, 3106, 3921, 4928, 6180, 7715, 9622, 11935, 14783, 18243, 22470, 27601, 33819, 41327, 50407, 61325, 74494, 90244, 109154, 131732, 158725, 190892, 229171, 274633, 328615
Offset: 0
Keywords
Programs
-
PARI
my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(valuation(k, 5)+1)))
Formula
G.f.: A(x) = 1/Product_{i>=1, j>=0} (1 - x^(i * 5^j)).
Let A(x) be the g.f. of this sequence, and P(x) be the g.f. of A000041, then P(x) = A(x)/A(x^5).
A373297 Euler transform of A373216.
1, 1, 2, 3, 5, 7, 12, 16, 24, 33, 47, 63, 90, 118, 161, 212, 283, 367, 487, 624, 812, 1037, 1332, 1685, 2152, 2700, 3409, 4259, 5333, 6617, 8242, 10165, 12568, 15436, 18970, 23178, 28360, 34487, 41970, 50850, 61599, 74322, 89696, 107809, 129572, 155235, 185881, 221936
Offset: 0
Keywords
Programs
-
PARI
my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(valuation(k, 6)+1)))
Formula
G.f.: A(x) = 1/Product_{i>=1, j>=0} (1 - x^(i * 6^j)).
Let A(x) be the g.f. of this sequence, and P(x) be the g.f. of A000041, then P(x) = A(x)/A(x^6).
A373298 Euler transform of A373217.
1, 1, 2, 3, 5, 7, 11, 16, 23, 32, 45, 61, 84, 112, 152, 200, 265, 345, 451, 581, 750, 960, 1225, 1552, 1965, 2470, 3101, 3872, 4830, 5990, 7421, 9152, 11270, 13825, 16932, 20672, 25191, 30608, 37129, 44920, 54257, 65376, 78660, 94419, 113172, 135370, 161687, 192752
Offset: 0
Keywords
Programs
-
PARI
my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(valuation(k, 7)+1)))
Formula
G.f.: A(x) = 1/Product_{i>=1, j>=0} (1 - x^(i * 7^j)).
Let A(x) be the g.f. of this sequence, and P(x) be the g.f. of A000041, then P(x) = A(x)/A(x^7).
A327727 Expansion of Product_{i>=1, j>=0} (1 + x^(i*2^j)) / (1 - x^(i*2^j)).
1, 2, 6, 12, 28, 52, 104, 184, 340, 578, 1004, 1652, 2752, 4404, 7088, 11080, 17362, 26592, 40730, 61284, 92096, 136408, 201608, 294456, 428952, 618658, 889684, 1268624, 1803520, 2545164, 3580784, 5005584, 6976046, 9667164, 13356364, 18360368, 25165732
Offset: 0
Keywords
Programs
-
Mathematica
nmax = 36; CoefficientList[Series[Product[1/(1 - x^k)^(IntegerExponent[2 k, 2] + 1), {k, 1, nmax}], {x, 0, nmax}], x] a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (IntegerExponent[2 d, 2] + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 36}]
-
PARI
seq(n)={Vec(1/prod(k=1, n, (1 - x^k + O(x*x^n))^(2+valuation(k, 2))))} \\ Andrew Howroyd, Sep 23 2019
Comments
Examples
References
Links
Crossrefs
Programs
Haskell
Haskell
MATLAB
Magma
Maple
Mathematica
PARI
PARI
PARI
PARI
Python
Python
Python
Sage
Scheme
Formula
Extensions