cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261356 Pyramid of coefficients in expansion of (1+x+2*y)^n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 4, 1, 4, 4, 1, 3, 6, 3, 12, 12, 1, 6, 12, 8, 1, 4, 8, 6, 24, 24, 4, 24, 48, 32, 1, 8, 24, 32, 16, 1, 5, 10, 10, 40, 40, 10, 60, 120, 80, 5, 40, 120, 160, 80, 1, 10, 40, 80, 80, 32, 1, 6, 12, 15, 60, 60, 20, 120, 240, 160, 15, 120, 360, 480
Offset: 0

Views

Author

Dimitri Boscainos, Aug 16 2015

Keywords

Comments

T(n,j,k) is the number of lattice paths from (0,0,0) to (n,j,k) with steps (1,0,0), (1,1,0) and two kinds of steps (1,1,1).
The sum of the terms in each slice of the pyramid is 4^n (A000302).
The terms of the j-th row of the n-th slice of this pyramid are the sum of the terms in each row of the j-th triangle of the n-th slice of A189225. - Dimitri Boscainos, Aug 21 2015

Examples

			Here is the fourth (n=3) slice of the pyramid:
.....1......
...3   6....
..3  12  12.
.1  6  12  8
As an irregular triangle, rows begin:
1;
1, 1, 2;
1, 2, 4, 1, 4, 4;
1, 3, 6, 3, 12, 12, 1, 6, 12, 8;
...
		

Crossrefs

Programs

  • Maple
    p:= proc(i, j, k) option remember;
          if k<0 or i<0 or i>k or j<0 or j>i then 0
        elif {i, j, k}={0} then 1
        else p(i, j, k-1) +p(i-1, j, k-1) +2*p(i-1, j-1, k-1)
          fi
        end:
    seq(seq(seq(p(i, j, k), j=0..i), i=0..k), k=0..5);
    # Alois P. Heinz, Aug 20 2015
  • Mathematica
    p[i_, j_, k_] := p[i, j, k] = If[k < 0 || i < 0 || i > k || j < 0 || j > i, 0, If[Union@{i, j, k} == {0}, 1, p[i, j, k - 1] + p[i - 1, j, k - 1] + 2* p[i - 1, j - 1, k - 1]]];
    Table[Table[Table[p[i, j, k], {j, 0, i}], {i, 0, k}], {k, 0, 5}] // Flatten (* Jean-François Alcover, Sep 16 2023, after Alois P. Heinz *)

Formula

T(i+1,j,k) = 2*T(i,j-1,k-1)+T(i,j-1,k)+T(i,j,k); T(i,j,-1)=0,...; T(0,0,0)=1.
T(n,j,k) = 2^k*binomial(n,j)*binomial(j,k). - Dimitri Boscainos, Aug 21 2015