A261394 Expansion of phi(q)^4 / phi(q^3) in powers of q where phi() is a Ramanujan theta function.
1, 8, 24, 30, 8, 0, 36, 48, 24, 32, 48, 48, 30, 0, 48, 72, 8, 48, 96, 48, 0, 0, 96, 96, 36, 56, 48, 102, 48, 0, 120, 48, 24, 72, 48, 96, 32, 0, 96, 120, 48, 48, 144, 144, 48, 0, 96, 96, 30, 56, 120, 144, 0, 0, 108, 96, 48, 120, 144, 48, 72, 0, 144, 192, 8, 96
Offset: 0
Keywords
Examples
G.f. = 1 + 8*x + 24*x^2 + 30*x^3 + 8*x^4 + 36*x^6 + 48*x^7 + 24*x^8 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A004013.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^4 / EllipticTheta[ 3, 0, q^3], {q, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^20 * eta(x^3 + A)^2 * eta(x^12 + A)^2 / (eta(x + A)^8 * eta(x^4 + A)^8 * eta(x^6 + A)^5), n))};
Formula
Euler transform of period 12 sequence [ 8, -12, 6, -4, 8, -9, 8, -4, 6, -12, 8, -3, ...].
a(n) = A004013(12*n).
Comments