cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261440 Array of coefficients A(n,k) of the formal power series P(n,x) read by upwards antidiagonals, where P(n,x) = Sum_{k>=0} A(n,k)*x^k = 1+x*P(n,x)^(1*n)+x^2*P(n,x)^(2*n) for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 3, 4, 0, 1, 1, 4, 11, 9, 0, 1, 1, 5, 21, 46, 21, 0, 1, 1, 6, 34, 127, 207, 51, 0, 1, 1, 7, 50, 268, 833, 979, 127, 0, 1, 1, 8, 69, 485, 2299, 5763, 4797, 323, 0, 1, 1, 9, 91, 794, 5130, 20838, 41401, 24138, 835, 0
Offset: 0

Views

Author

Werner Schulte, Aug 18 2015

Keywords

Comments

The terms define the array A(n,k):
n\k: 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1 1 1 0 0 0 0 0 0 0 0 ...
1: 1 1 2 4 9 21 51 127 323 835 ...
2: 1 1 3 11 46 207 979 4797 24138 123998 ...
3: 1 1 4 21 127 833 5763 41401 305877 2309385 ...
4: 1 1 5 34 268 2299 20838 ...
5: 1 1 6 50 485 5130 ...
6: 1 1 7 69 794 ...
7: 1 1 8 91 ...
8: 1 1 9 116 ...
9: 1 1 10 144 ...
10: 1 ...
etc.
For row 1 see A001006, for row 2 see A006605, and for row 3 see A255673.
Be careful if you use the formulas for n < 0 (DIV0, signed values)!
Nevertheless, it might be interesting ...
Conjecture: The A(n,k), here n > 0, are the number of lattice paths, if
(a) length of path is k*n for the k-th term of row n,
(b) allowed steps are (1,-1), (1,-1+n) and (1,-1+2*n) for terms of row n,
(c) you start at (0,0), end at (k*n,0), and
(d) never cross the x-axis.
This is proved for row 1 (A001006) and row 2 (A006605).
Conjecture: The coefficients B(m,n,k) of the P(n,x)^m (see the formula below), m > 0 and n > 0, are the number of lattice paths, if
(a) length of path is k*n+m-1 (k-th coefficient of P(n,x)^m),
(b) allowed steps are (1,-1), (1,-1+n), and (1,-1+2*n),
(c) you start at (0,m-1), end at (k*n+m-1,0), and
(d) never cross the x-axis.
This is proved for B(1,1,k) (A001006), and B(1,2,k) (A006605). - Werner Schulte, Aug 30 2015

Examples

			The terms of the array A(n,k) read by upwards antidiagonals define the triangle T(n,m) = A(n-m,m) for 0 <= m <= n, i.e.
  1;
  1, 1;
  1, 1, 1;
  1, 1, 2,  0;
  1, 1, 3,  4,  0;
  1, 1, 4, 11,  9,  0;
  1, 1, 5, 21, 46, 21, 0;
  etc.
		

Crossrefs

Formula

A(n,k) = 1/(n*k+1)*Sum_{j=0..k} (-1)^j*binomial(n*k+1, j)*binomial(2*n*k+2-2*j, k-j) (conjectured).
The g.f. P(n,x) of row n of the array A(n,k) satisfy:
P(n,x) = (1 + x*P(n,x)^n)^2/(1 + x*P(n,x)^(n-1)), n > 0.
P(n,x) = P(n-1,x*P(n,x)), n > 0.
P(n,x) = P(n-2,x*P(n,x)^2), n > 1.
etc.
P(n,x) = P(0,x*P(n,x)^n), n >= 0.
The coefficients B(m,n,k) of the P(n,x)^m are:
B(m,n,k) = m/(n*k + m)*(Sum_{j=0..k} (-1)^j*binomial(n*k+m, j)* binomial(2*n*k + 2*m - 2*j, k - j)), if m > 0, and n > 0 (conjectured).
A(n,0) = A(n,1) = 1, n >= 0.
A(n,2) = n+1, n >= 0.
A(n,3) = n*(3*n + 5)/2, n >= 0.
A(n,4) = n*(8*n^2 + 18*n + 1)/3, n >= 0.
A(n,5) = n*(125*n^3 + 350*n^2 + 55*n - 26)/24, n >= 0.
P(n,x) = exp(Sum_{k>=1} 1/(n*k)*(Sum{j=0..k} (-1)^j*binomial(n*k,j)* binomial(2*n*k-2*j,k-j))) for n > 0 (conjectured). - Werner Schulte, Sep 20 2015
P(n,x/(1+x+x^2)^n) = 1+x+x^2 for n >= 0. - Werner Schulte, Oct 20 2015