A261443 Number of binary strings of length n+5 such that the smallest number whose binary representation is not visible in the string is 7.
0, 2, 9, 31, 79, 185, 408, 864, 1771, 3555, 7021, 13696, 26453, 50700, 96565, 182983, 345269, 649188, 1217000, 2275699, 4246229, 7908427, 14705711, 27307682, 50648414, 93841900, 173714334, 321316013, 593922885, 1097150252, 2025690002, 3738341466, 6896182121
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-3,-1,3,7,2,-4,-10,-3,3,7,3,-1,-2,-1).
Crossrefs
Column k=7 of A261019.
Programs
-
Haskell
a261443 n = a261019' (n + 5) 7
Formula
a(n) = A261019(n+5,7).
G.f.: -(x^12+3*x^11+3*x^10-8*x^8-13*x^7-14*x^6-x^5+9*x^4+12*x^3-x^2-x-2)*x / ((x+1)*(x^2+1)*(x^2+x-1)*(x^3+x^2-1)*(x^3+x^2+x-1)*(x^3+x-1)*(x-1)^2). - Alois P. Heinz, Aug 19 2015
Extensions
More terms from Alois P. Heinz, Aug 19 2015