A261463 Numbers n such that n is a twin prime and 2n + 1 is a twin prime.
3, 5, 29, 659, 809, 2129, 2549, 3329, 3389, 5849, 6269, 10529, 33179, 41609, 44129, 53549, 55439, 57329, 63839, 65099, 70379, 70979, 72269, 74099, 74759, 78779, 80669, 81929, 87539, 93239, 102299, 115469, 124769, 133979, 136949, 156419, 161459, 168449
Offset: 1
Keywords
Examples
809 is a term because 809 and 811 are twin primes, and 2*809+1 = 1619 is a prime and a twin prime with 1621.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
sgtpQ[n_]:=Module[{sgp=2n+1},PrimeQ[sgp]&&AnyTrue[sgp+{2,-2},PrimeQ]]; Select[Union[Flatten[Select[Partition[Prime[Range[25000]],2,1], #[[2]]- #[[1]] ==2&]]],sgtpQ] (* The program uses the AnyTrue function from Mathematica version 10 *) p=PrimeQ; Select[Prime@ Range[10^5], p[2#+1] && (p[#+2] || p[#-2]) && (p[2#+3] || p[2#-1]) &] (* Giovanni Resta, Aug 20 2015 *)
Formula
a(n+1) = A069142(n), n>=1. - G. C. Greubel, Aug 23 2015
Comments