A261473 Number of binary strings of length n+6 such that the smallest number whose binary representation is not visible in the string is 8.
0, 2, 10, 40, 116, 296, 699, 1557, 3325, 6893, 13964, 27789, 54536, 105854, 203645, 388970, 738596, 1395718, 2626914, 4927664, 9217604, 17201570, 32036763, 59564873, 110586325, 205056292, 379823379, 702897160, 1299744979, 2401747773, 4435467036, 8187063102
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-5,-6,10,21,0,-29,-33,11,44,30,-16,-36,-17,9,16,6,-2,-3,-1).
Crossrefs
Column k=8 of A261019.
Programs
-
Mathematica
CoefficientList[Series[(x^16+5x^15+11x^14+10x^13-9x^12-40x^11-52x^10-19x^9+36x^8+61x^7+31x^6-13x^5-26x^4- 14x^3+ 4x^2+ 2x+2)x/((x+1)(x^2+x+1)(x^3+x^2-1)(x^2+x-1)(x^3+x^2+x-1)(x^4+x^3-1)(x^3+x-1)(x-1)^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,-2,-5,-6,10,21,0,-29,-33,11,44,30,-16,-36,-17,9,16,6,-2,-3,-1},{0,2,10,40,116,296,699,1557,3325,6893,13964,27789,54536,105854,203645,388970,738596,1395718,2626914,4927664,9217604},40] (* Harvey P. Dale, Oct 30 2024 *)
Formula
G.f.: (x^16 +5*x^15 +11*x^14 +10*x^13 -9*x^12 -40*x^11 -52*x^10 -19*x^9 +36*x^8 +61*x^7 +31*x^6 -13*x^5 -26*x^4 -14*x^3 +4*x^2 +2*x+2) *x / ((x+1) *(x^2+x+1) *(x^3+x^2-1) *(x^2+x-1) *(x^3+x^2+x-1) *(x^4+x^3-1) *(x^3+x-1) *(x-1)^3).
a(n) = A261019(n+6,8).