cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261473 Number of binary strings of length n+6 such that the smallest number whose binary representation is not visible in the string is 8.

Original entry on oeis.org

0, 2, 10, 40, 116, 296, 699, 1557, 3325, 6893, 13964, 27789, 54536, 105854, 203645, 388970, 738596, 1395718, 2626914, 4927664, 9217604, 17201570, 32036763, 59564873, 110586325, 205056292, 379823379, 702897160, 1299744979, 2401747773, 4435467036, 8187063102
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2015

Keywords

Crossrefs

Column k=8 of A261019.

Programs

  • Mathematica
    CoefficientList[Series[(x^16+5x^15+11x^14+10x^13-9x^12-40x^11-52x^10-19x^9+36x^8+61x^7+31x^6-13x^5-26x^4- 14x^3+ 4x^2+ 2x+2)x/((x+1)(x^2+x+1)(x^3+x^2-1)(x^2+x-1)(x^3+x^2+x-1)(x^4+x^3-1)(x^3+x-1)(x-1)^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,-2,-5,-6,10,21,0,-29,-33,11,44,30,-16,-36,-17,9,16,6,-2,-3,-1},{0,2,10,40,116,296,699,1557,3325,6893,13964,27789,54536,105854,203645,388970,738596,1395718,2626914,4927664,9217604},40] (* Harvey P. Dale, Oct 30 2024 *)

Formula

G.f.: (x^16 +5*x^15 +11*x^14 +10*x^13 -9*x^12 -40*x^11 -52*x^10 -19*x^9 +36*x^8 +61*x^7 +31*x^6 -13*x^5 -26*x^4 -14*x^3 +4*x^2 +2*x+2) *x / ((x+1) *(x^2+x+1) *(x^3+x^2-1) *(x^2+x-1) *(x^3+x^2+x-1) *(x^4+x^3-1) *(x^3+x-1) *(x-1)^3).
a(n) = A261019(n+6,8).