A261474 Number of binary strings of length n+7 such that the smallest number whose binary representation is not visible in the string is 9.
0, 2, 12, 52, 168, 461, 1133, 2612, 5759, 12309, 25666, 52509, 105803, 210655, 415349, 812461, 1578752, 3050921, 5868562, 11244267, 21472441, 40887802, 77668032, 147222550, 278556477, 526215993, 992694708, 1870443330, 3520594166, 6620431857, 12439538938
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10, -40, 73, -18, -184, 344, -119, -447, 680, -55, -833, 792, 294, -1086, 538, 618, -896, 88, 638, -452, -176, 395, -115, -160, 141, 7, -64, 26, 12, -13, 2, 2, -1).
Crossrefs
Column k=9 of A261019.
Programs
-
Mathematica
CoefficientList[Series[(x^28+x^27-3x^26+4x^25+12x^24-20x^23-8x^22+55x^21-37x^20-85x^19+123x^18+21x^17-208x^16+117x^15+166x^14-227x^13-17x^12+235x^11-108x^10-122x^9+134x^8+8x^7-86x^6+31x^5+21x^4-18x^3+12x^2-8x+2)x/((x+1)(x^2-x+1)(x^2+x-1)(x^4-x^3+2x-1)(x^5+x^4+x-1)(x^5+x^2+x-1)(x^4-x^3+x^2+x-1)(x^3+x^2-1)(x^4+x-1)(x-1)^3),{x,0,30}],x] (* or *) LinearRecurrence[{10,-40,73,-18,-184,344,-119,-447,680,-55,-833,792,294,-1086,538,618,-896,88,638,-452,-176,395,-115,-160,141,7,-64,26,12,-13,2,2,-1},{0,2,12,52,168,461,1133,2612,5759,12309,25666,52509,105803,210655,415349,812461,1578752,3050921,5868562,11244267,21472441,40887802,77668032,147222550,278556477,526215993,992694708,1870443330,3520594166,6620431857,12439538938,23356730756,43827457565},40] (* Harvey P. Dale, Jul 23 2025 *)
Formula
G.f.: (x^28 +x^27 -3*x^26 +4*x^25 +12*x^24 -20*x^23 -8*x^22 +55*x^21 -37*x^20 -85*x^19 +123*x^18 +21*x^17 -208*x^16 +117*x^15 +166*x^14 -227*x^13 -17*x^12 +235*x^11 -108*x^10 -122*x^9 +134*x^8 +8*x^7 -86*x^6 +31*x^5 +21*x^4 -18*x^3 +12*x^2 -8*x+2)*x / ((x+1) *(x^2-x+1) *(x^2+x-1) *(x^4-x^3+2*x-1) *(x^5+x^4+x-1) *(x^5+x^2+x-1) *(x^4-x^3+x^2+x-1) *(x^3+x^2-1) *(x^4+x-1) *(x-1)^3).
a(n) = A261019(n+7,9).