A261529 Number k such that k^2 + 1 = p*q*r where p,q,r are distinct primes and the sum p+q+r is a perfect square.
17, 37, 91, 235, 683, 1423, 1675, 2879, 8101, 9595, 13711, 18799, 19601, 21295, 25937, 30059, 32111, 36251, 39505, 41071, 49285, 60719, 79441, 90575, 93871, 94799, 103429, 112571, 132085, 136075, 144965, 180001, 180251, 188465, 189679
Offset: 1
Keywords
Examples
17 is in the sequence because 17^2 + 1 = 2*5*29 and 2 + 5 + 29 = 6^2.
Programs
-
Maple
with(numtheory): for n from 1 to 200000 do: y:=factorset(n^2+1):n0:=nops(y): if n0=3 and bigomega(n^2+1)=3 and sqrt(y[1]+y[2]+y[3])=floor(sqrt(y[1]+y[2]+y[3])) then printf(`%d, `,n): else fi: od:
-
PARI
isok(n) = my(f = factor(n^2+1)); (#f~ == 3) && (vecmax(f[,2]) == 1) && issquare(vecsum(f[,1])); \\ Michel Marcus, Aug 24 2015
Comments