A261555 Triangle read by rows: T(n,k) is number of partitions of n having at least k distinct parts (n >= 1, k >= 1).
1, 2, 3, 1, 5, 2, 7, 5, 11, 7, 1, 15, 13, 2, 22, 18, 5, 30, 27, 10, 42, 38, 16, 1, 56, 54, 27, 2, 77, 71, 42, 5, 101, 99, 62, 10, 135, 131, 87, 20, 176, 172, 128, 31, 1, 231, 226, 171, 54, 2, 297, 295, 236, 82, 5, 385, 379, 311, 127, 10, 490, 488, 417, 182, 20
Offset: 1
Examples
Triangle starts: 1; 2; 3, 1; 5, 2; 7, 5; 11, 7, 1; 15, 13, 2; 22, 18, 5; 30, 27, 10; 42, 38, 16, 1; 56, 54, 27, 2; 77, 71, 42, 5; ...
References
- Jacques Barbot, Essai sur la structuration de l'analyse combinatoire, Paris, Dulac, 1973, Annexe 12A, p. 74.
Links
- Alois P. Heinz, Rows n = 1..500, flattened
Programs
-
Mathematica
Table[DeleteCases[Map[Count[Map[Length@ Union@ # &, IntegerPartitions@ n], k_ /; k >= #] &, Range@ n], 0], {n, 19}] // Flatten (* Michael De Vlieger, Sep 14 2016 *)
Formula
T(n,1) - T(n,2) = A000005(n). - Omar E. Pol, Sep 17 2016
Extensions
More terms from Alois P. Heinz, Aug 24 2015
Comments