cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261555 Triangle read by rows: T(n,k) is number of partitions of n having at least k distinct parts (n >= 1, k >= 1).

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 5, 11, 7, 1, 15, 13, 2, 22, 18, 5, 30, 27, 10, 42, 38, 16, 1, 56, 54, 27, 2, 77, 71, 42, 5, 101, 99, 62, 10, 135, 131, 87, 20, 176, 172, 128, 31, 1, 231, 226, 171, 54, 2, 297, 295, 236, 82, 5, 385, 379, 311, 127, 10, 490, 488, 417, 182, 20
Offset: 1

Views

Author

Michel Marcus, Aug 24 2015

Keywords

Comments

From Omar E. Pol, Sep 14 2016: (Start)
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
Row sums give A000070.
Alternating row sums give A090794.
Column 1 is A000041, n >= 1. (End)
[0, 0] together with column 2 gives A144300. - Omar E. Pol, Sep 17 2016

Examples

			Triangle starts:
1;
2;
3,  1;
5,  2;
7,  5;
11, 7,  1;
15, 13, 2;
22, 18, 5;
30, 27, 10;
42, 38, 16, 1;
56, 54, 27, 2;
77, 71, 42, 5;
...
		

References

  • Jacques Barbot, Essai sur la structuration de l'analyse combinatoire, Paris, Dulac, 1973, Annexe 12A, p. 74.

Crossrefs

Programs

  • Mathematica
    Table[DeleteCases[Map[Count[Map[Length@ Union@ # &, IntegerPartitions@ n], k_ /; k >= #] &, Range@ n], 0], {n, 19}] // Flatten (* Michael De Vlieger, Sep 14 2016 *)

Formula

T(n,k) = Sum_{j>=k} A116608(n,j) assuming A116608(n,j)=0 when j>A003056(n).
T(n,1) - T(n,2) = A000005(n). - Omar E. Pol, Sep 17 2016

Extensions

More terms from Alois P. Heinz, Aug 24 2015