A295679 Array read by antidiagonals: T(n,k) = k-Modular Catalan numbers C_{n,k} (n >= 0, k > 0).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 5, 8, 1, 1, 1, 2, 5, 13, 16, 1, 1, 1, 2, 5, 14, 35, 32, 1, 1, 1, 2, 5, 14, 41, 96, 64, 1, 1, 1, 2, 5, 14, 42, 124, 267, 128, 1, 1, 1, 2, 5, 14, 42, 131, 384, 750, 256, 1, 1, 1, 2, 5, 14, 42, 132, 420, 1210, 2123, 512, 1
Offset: 0
A261589 6-Modular Catalan Numbers C_{n,6}.
1, 1, 2, 5, 14, 42, 132, 428, 1420, 4796, 16432, 56966, 199444, 704146, 2504000, 8960445, 32241670, 116580200, 423372684, 1543542369, 5647383786, 20728481590, 76305607480, 281648344965, 1042139463066, 3864822037106, 14362983740692, 53481776523398
Offset: 0
Keywords
Comments
Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.
Examples
The Catalan number C_7=429 counts the parenthesizations of x_1*...*x_8 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8))))))) = x1+wx2+w^2x3+w^3x4+w^4x5+w^5x6+x7+wx8 = x1*(x2*(x3*(x4*(x5*(x6*(x7))))))*(x8). For n=7 and k=6, these are the only parenthesizations that give the same value for x1*...*x8, so C_{7,6}=429-1=428.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Nickolas Hein, Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016.
Crossrefs
Programs
-
Mathematica
terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]]; col[6] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
-
PARI
Vec(1/(1-serreverse(x*(1-x)/(1-x^6) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
-
Sage
def C(k): print(1) for n in range(1,51): f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n f = f.simplify_full() C = 0 for i in range(n): C = C + (n-i)*f.coefficient(x,i)/n print(C) time C(6)
Formula
sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l , MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A036767. - Andrew Howroyd, Dec 04 2017
Recurrence: 8*n*(2*n - 1)*(4*n - 3)*(4*n - 1)*(10916887*n^9 - 249224042*n^8 + 2469255538*n^7 - 13933215932*n^6 + 49334513763*n^5 - 113647334214*n^4 + 170286019860*n^3 - 160004333492*n^2 + 85539013792*n - 19822693440)*a(n) = 3*(9508608577*n^13 - 237215797097*n^12 + 2623858643982*n^11 - 16999631384890*n^10 + 71778494499061*n^9 - 207873203457553*n^8 + 423002845054480*n^7 - 609054955793764*n^6 + 616019881995932*n^5 - 427963644130760*n^4 + 195602628794128*n^3 - 54415561156256*n^2 + 7923069832320*n - 416553984000)*a(n-1) - 6*(12412500519*n^13 - 321587757141*n^12 + 3711217654502*n^11 - 25208616228279*n^10 + 112156507241451*n^9 - 344001598358364*n^8 + 745080116604760*n^7 - 1147205777244243*n^6 + 1245874269527820*n^5 - 932293147229545*n^4 + 459871406685588*n^3 - 138195004254428*n^2 + 21782980665360*n - 1261019808000)*a(n-2) + 36*(n-3)*(687763881*n^12 - 16781886459*n^11 + 179899148857*n^10 - 1116006568486*n^9 + 4439364432038*n^8 - 11848465605195*n^7 + 21556040876457*n^6 - 26592812193824*n^5 + 21678236082931*n^4 - 11083403407596*n^3 + 3237388989236*n^2 - 458954256240*n + 24454886400)*a(n-3) - 216*(n-4)*(n-3)*(10916887*n^11 - 205556494*n^10 + 1637060823*n^9 - 7312163106*n^8 + 20993566701*n^7 - 44229711078*n^6 + 78086672677*n^5 - 116636175274*n^4 + 128035289512*n^3 - 87494286088*n^2 + 31392748560*n - 4319092800)*a(n-4) - 1296*(n-5)*(n-4)*(n-3)*(10916887*n^10 - 183722720*n^9 + 1276350867*n^8 - 4759019384*n^7 + 10358683545*n^6 - 13414621556*n^5 + 10161953673*n^4 - 4442494876*n^3 + 1316475548*n^2 - 382696304*n + 67140480)*a(n-5) - 7776*(n-6)*(n-5)*(n-4)*(n-3)*(10916887*n^9 - 150972059*n^8 + 868471134*n^7 - 2709681834*n^6 + 5008565879*n^5 - 5619215727*n^4 + 3761917980*n^3 - 1414279492*n^2 + 261591168*n - 17081280)*a(n-6). - Vaclav Kotesovec, Dec 05 2017
A261590 7-Modular Catalan Numbers C_{n,7}.
1, 1, 2, 5, 14, 42, 132, 429, 1429, 4851, 16718, 58331, 205632, 731272, 2620176, 9449695, 34276230, 124959485, 457621780, 1682686509, 6209928010, 22993696620, 85396852670, 318034472365, 1187429860461, 4443824658798, 16666506959312, 62632954529054
Offset: 0
Keywords
Comments
Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.
Examples
The Catalan number C_8=1430 counts the parenthesizations of x_1*...*x_9 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9)))))))) = x1+wx2+w^2x3+w^3x4+w^4x5+w^5x6+w^6x7+x8+wx9 = x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8)))))))*(x9). For n=8 and k=7, these are the only parenthesizations that give the same value for x1*...*x9, so C_{8,7}=1430-1=1429.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Nickolas Hein, Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016.
- Vaclav Kotesovec, Recurrence (of order 7)
Crossrefs
Programs
-
Mathematica
terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]]; col[7] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
-
PARI
Vec(1/(1-serreverse(x*(1-x)/(1-x^7) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
-
Sage
def C(k): print(1) for n in range(1,51): f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n f = f.simplify_full() C = 0 for i in range(n): C = C + (n-i)*f.coefficient(x,i)/n print(C) time C(7)
Formula
sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l , MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A036768. - Andrew Howroyd, Dec 04 2017
A261591 8-Modular Catalan Numbers C_{n,8}.
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16784, 58695, 207452, 739840, 2658936, 9620232, 35011566, 128082523, 470731970, 1737220254, 6435115168, 23918062480, 89172805980, 333396591075, 1249717509612, 4695654554206, 17682176062376, 66720743308877
Offset: 0
Keywords
Comments
Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.
Examples
The Catalan number C_9=4862 counts the parenthesizations of x_1*...*x_10 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9*(x10))))))))) = x1+wx2+w^2x3+w^3x4+w^4x5+w^5x6+w^6x7+w^7x8+x9+wx10 = x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9))))))))*(x10). For n=9 and k=8, these are the only parenthesizations that give the same value for x1*...*x10, so C_{9,8}=4862-1=4861.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Nickolas Hein, Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2016-2016.
Crossrefs
Programs
-
Mathematica
terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]]; col[8] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
-
PARI
Vec(1/(1-serreverse(x*(1-x)/(1-x^8) + O(x*x^25)))) \\ Andrew Howroyd, Dec 04 2017
-
Sage
def C(k): print(1) for n in range(1,51): f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n f = f.simplify_full() C = 0 for i in range(n): C = C + (n-i)*f.coefficient(x,i)/n print(C) time C(8)
Formula
sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l , MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A036769. - Andrew Howroyd, Dec 04 2017
A261592 9-Modular Catalan Numbers C_{n,9}.
1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16795, 58773, 207907, 742220, 2670564, 9674496, 35256723, 129164090, 475418625, 1757248194, 6519768464, 24272733060, 90648139140, 339497371575, 1274821281747, 4798525000860, 18102238168134, 68430875696534
Offset: 0
Keywords
Comments
Definition: Given a primitive k-th root of unity w, a binary operation a*b=a+wb, and sufficiently general fixed complex numbers x_0, ..., x_n, the k-modular Catalan numbers C_{n,k} enumerate parenthesizations of x_0*x_1*...*x_n that give distinct values.
Theorem: C_{n,k} enumerates the following objects:
(1) binary trees with n internal nodes avoiding a certain subtree (i.e., comb_k^{+1}),
(2) plane trees with n+1 nodes whose non-root nodes have degree less than k,
(3) Dyck paths of length 2n avoiding a down-step followed immediately by k consecutive up-steps,
(4) partitions with n nonnegative parts bounded by the staircase partition (n-1,n-2,...,1,0) such that each positive number appears fewer than k times,
(5) standard 2-by-n Young tableaux whose top row avoids contiguous labels of the form i,j+1,j+2,...,j+k for all i
(6) permutations of {1,2,...,n} avoiding 1-3-2 and 23...(k+1)1.
Examples
The Catalan number C_10=16796 counts the parenthesizations of x_1*...*x_11 where * is arbitrary. Defining * and w as above and writing x_i compactly as xi, we have x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9*(x10*(x11)))))))))) = x1+wx2+w^2x3+w^3x4+w^4x5+w^5x6+w^6x7+w^7x8+w^8x9+x10+wx11 = x1*(x2*(x3*(x4*(x5*(x6*(x7*(x8*(x9*(x10)))))))))*(x11). For n=10 and k=9, these are the only parenthesizations that give the same value for x1*...*x11, so C_{10,9}=16796-1=16795.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- Nickolas Hein, Jia Huang, Modular Catalan Numbers, arXiv:1508.01688 [math.CO], 2015-2016.
Crossrefs
Programs
-
Mathematica
terms = 30; col[k_] := Module[{G}, G = InverseSeries[x*(1 - x)/(1 - x^k) + O[x]^terms, x]; CoefficientList[1/(1 - G), x]]; col[9] (* Jean-François Alcover, Dec 05 2017, after Andrew Howroyd *)
-
PARI
Vec(1/(1-serreverse(x*(1-x)/(1-x^9) + O(x*x^25)))) \\ Andrew Howroyd, Nov 29 2017
-
Sage
def C(k): print(1) for n in range(1,51): f = ((1-x^k)/(1-x))^n # ((x+1)^2-x^2*(x/(x+1))^(k-2))^n f = f.simplify_full() C = 0 for i in range(n): C = C + (n-i)*f.coefficient(x,i)/n print(C) time C(9)
Formula
sum( 1<=l<=n, (l/n)sum( m_1+...+m_k=n and m_2+2m_3+...+(k-1)m_k=n-l , MC(n;m_1,...,m_k) ) ), where MC(n;m_1,...,m_k) is the multinomial coefficient associated to the multiset (m_1,...,m_k).
G.f.: 1/(1-x*G(x)) where G(x) is g.f. of A291823. - Andrew Howroyd, Nov 29 2017
Comments
Examples
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula