A261599 Number of primitive (aperiodic, or Lyndon) necklaces with n beads of unlabeled colors such that the numbers of beads per color are distinct.
1, 1, 0, 1, 1, 3, 13, 24, 67, 252, 1795, 4038, 16812, 61750, 349806, 3485026, 10391070, 49433135, 240064988, 1282012986, 9167581934, 131550811985, 459677212302, 2707382738558, 14318807586215, 94084166753923, 601900541189696, 5894253303715121
Offset: 0
Keywords
Examples
a(4) = 1: 0001. a(5) = 3: 00001, 00011, 00101. a(6) = 13: 000001, 000011, 000101, 000112, 000121, 000122, 001012, 001021, 001022, 001102, 001201, 001202, 010102. a(7) = 24: 0000001, 0000011, 0000101, 0000111, 0000112, 0000121, 0000122, 0001001, 0001011, 0001012, 0001021, 0001022, 0001101, 0001102, 0001201, 0001202, 0010011, 0010012, 0010021, 0010022, 0010101, 0010102, 0010201, 0010202.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc.
- F. Ruskey, Necklaces, Lyndon words, De Bruijn sequences, etc. [Cached copy, with permission, pdf format only]
- Eric Weisstein's World of Mathematics, Necklace
- Wikipedia, Lyndon word
- Wikipedia, Necklace (combinatorics)
- Index entries for sequences related to necklaces
Programs
-
Maple
with(numtheory): b:= proc(n, i, g, d, j) option remember; `if`(i*(i+1)/2
0 and g n, 0, binomial(n/j, i/j)*b(n-i, i-1, igcd(i, g), d, j)))) end: a:= n-> `if`(n=0, 1, add(add((f-> `if`(f=0, 0, f*b(n$2, 0, d, j)))( mobius(j)), j=divisors(d)), d=divisors(n))/n): seq(a(n), n=0..30); -
Mathematica
a[0] = 1; a[n_] := With[{P = Product[1 + x^k/k!, {k, 1, n}] + O[x]^(n+1) // Normal}, DivisorSum[n, MoebiusMu[n/#]*#!*Coefficient[P, x, #]&]/n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, after Andrew Howroyd *)
-
PARI
a(n)={if(n==0, 1, my(p=prod(k=1, n, (1+x^k/k!) + O(x*x^n))); sumdiv(n, d, moebius(n/d)*d!*polcoeff(p, d))/n)} \\ Andrew Howroyd, Dec 21 2017
Formula
a(n) = (1/n) * Sum_{d | n} moebius(n/d) * A007837(d) for n>0. - Andrew Howroyd, Dec 21 2017