cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261600 Number of primitive (aperiodic, or Lyndon) necklaces with n beads such that beads of a largest subset have label 0, beads of a largest remaining subset have label 1, and so on.

Original entry on oeis.org

1, 1, 1, 3, 11, 49, 265, 1640, 11932, 96780, 887931, 8939050, 99298073, 1195617442, 15619180497, 219049941148, 3293800823995, 52746930894773, 897802366153076, 16167544246362566, 307372573010691195, 6148811682561388635, 129164845357775064609
Offset: 0

Views

Author

Alois P. Heinz, Aug 27 2015

Keywords

Examples

			a(3) = 3: 001, 012, 021.
a(4) = 11: 0001, 0011, 0012, 0021, 0102, 0123, 0132, 0213, 0231, 0312, 0321.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, g, d, j) option remember; `if`(g>0 and gn, 0, binomial(n/j, i/j)*b(n-i, i, igcd(i, g), d, j)))))
        end:
    a:= n-> `if`(n=0, 1, add(add((f-> `if`(f=0, 0, f*b(n$2, 0, d, j)))(
                         mobius(j)), j=divisors(d)), d=divisors(n))/n):
    seq(a(n), n=0..25);
  • Mathematica
    b[n_, i_, g_, d_, j_] := b[n, i, g, d, j] = If[g>0 && gn, 0, Binomial[n/j, i/j]*b[n-i, i, GCD[i, g], d, j]]]]]; a[n_] := If[n==0, 1, Sum[Sum[ Function[f, If[f==0, 0, f*b[n, n, 0, d, j]]][MoebiusMu[j]], {j, Divisors[ d]}], {d, Divisors[n]}]/n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

a(n) ~ c * (n-1)!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264818011615... . - Vaclav Kotesovec, Aug 27 2015