cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A247551 Decimal expansion of Product_{k>=2} 1/(1-1/k!).

Original entry on oeis.org

2, 5, 2, 9, 4, 7, 7, 4, 7, 2, 0, 7, 9, 1, 5, 2, 6, 4, 8, 1, 8, 0, 1, 1, 6, 1, 5, 4, 2, 5, 3, 9, 5, 4, 2, 4, 1, 1, 7, 8, 7, 0, 2, 3, 9, 4, 8, 4, 5, 9, 9, 7, 3, 3, 7, 5, 8, 4, 9, 3, 4, 9, 8, 2, 5, 0, 0, 2, 1, 1, 8, 7, 8, 0, 0, 8, 6, 6, 9, 9, 1, 2, 1, 9, 9, 8, 8, 3, 6, 4, 6, 2, 5, 2, 6, 1, 4, 9, 5, 5, 1, 6, 4, 3, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 19 2014

Keywords

Examples

			2.5294774720791526481801161542539542411787023948459973375849349825...
		

Crossrefs

Programs

  • Maple
    evalf(1/product(1-1/k!,k=2..infinity),100); # Vaclav Kotesovec, Sep 19 2014
  • Mathematica
    digits = 105;
    RealDigits[NProduct[1/(1-1/k!), {k, 2, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> digits], 10, digits][[1]] (* Jean-François Alcover, Nov 02 2020 *)
  • PARI
    default(realprecision,150); 1/prodinf(k=2,1 - 1/k!) \\ Vaclav Kotesovec, Sep 21 2014

Formula

Product_{k>=2} 1/(1-1/k!).
Equals lim_{n -> oo} A005651(n) / n!.
Equals 1/A282529. - Amiram Eldar, Sep 15 2023

A072605 Number of necklaces with n beads over an n-ary alphabet {a1,a2,...,an} such that #(w,a1) >= #(w,a2) >= ... >= #(w,ak) >= 0, where #(w,x) counts the letters x in word w.

Original entry on oeis.org

1, 1, 2, 4, 13, 50, 270, 1641, 11945, 96784, 887982, 8939051, 99298354, 1195617443, 15619182139, 219049941201, 3293800835940, 52746930894774, 897802366250126, 16167544246362567, 307372573011579188, 6148811682561390279, 129164845357784003661
Offset: 0

Views

Author

Wouter Meeussen, Aug 06 2002

Keywords

Crossrefs

Programs

  • Mathematica
    neck[li:{__Integer}] := Module[{n, d}, n=Plus@@li; d=n-First[li]; Fold[ #1+(EulerPhi[ #2]*(n/#2)!)/Times@@((li/#2)!)&, 0, Divisors[GCD@@li]]/n]; Table[ Plus@@(neck /@ IntegerPartitions[n]), {n, 24}]
  • PARI
    a(n)={if(n==0, 1, my(p=prod(k=1, n, 1/(1-x^k/k!) + O(x*x^n))); sumdiv(n, d, eulerphi(n/d)*d!*polcoeff(p,d))/n)} \\ Andrew Howroyd, Dec 20 2017

Formula

a(n) = (1/n) * Sum_{d|n} phi(n/d) * A005651(d) for n > 0. - Andrew Howroyd, Sep 25 2017
See Mathematica line.
a(n) ~ c * (n-1)!, where c = Product_{k>=2} 1/(1-1/k!) = A247551 = 2.52947747207915264818011615... . - Vaclav Kotesovec, Aug 27 2015

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 23 2015
Name changed by Andrew Howroyd, Sep 25 2017

A261531 Number of necklaces with n beads of unlabeled colors such that the numbers of beads per color are distinct.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 15, 25, 69, 254, 1799, 4039, 16828, 61751, 349831, 3485031, 10391139, 49433136, 240065255, 1282012987, 9167583734, 131550812011, 459677216341, 2707382738559, 14318807603110, 94084166753927, 601900541251447, 5894253303715375
Offset: 0

Views

Author

Alois P. Heinz, Aug 23 2015

Keywords

Examples

			a(4) = 2: 0000, 0001.
a(5) = 4: 00000, 00001, 00011, 00101.
a(6) = 15: 000000, 000001, 000011, 000101, 000112, 000121, 000122, 001001, 001012, 001021, 001022, 001102, 001201, 001202, 010102.
		

Crossrefs

Programs

  • Maple
    with(numtheory): with(combinat):
    g:= l-> (n-> `if`(n=0, 1, add(phi(j)*multinomial(n/j,
            (l/j)[]), j=divisors(igcd(l[])))/n))(add(i, i=l)):
    b:= proc(n, i, l) `if`(i*(i+1)/2n, 0, b(n-i, i-1, [l[], i]))))
        end:
    a:= n-> b(n$2, []):
    seq(a(n), n=0..35);
  • Mathematica
    multinomial[n_, k_] := n!/Times @@ (k!);
    g[l_] := Function[n, If[n==0, 1, Sum[EulerPhi[j]*multinomial[n/j, l/j], {j, Divisors[GCD @@ l]}]/n]][Total[l]];
    b[n_, i_, l_] := If[i*(i+1)/2n, 0, b[n-i, i-1, Append[l, i]]]]];
    a[n_] := b[n, n, {}];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
  • PARI
    a(n)={if(n==0, 1, my(p=prod(k=1, n, (1+x^k/k!) + O(x*x^n))); sumdiv(n, d, eulerphi(n/d)*d!*polcoeff(p, d))/n)} \\ Andrew Howroyd, Dec 21 2017

Formula

a(n) = (1/n) * Sum_{d | n} phi(n/d) * A007837(d) for n>0. - Andrew Howroyd, Apr 02 2017

A261599 Number of primitive (aperiodic, or Lyndon) necklaces with n beads of unlabeled colors such that the numbers of beads per color are distinct.

Original entry on oeis.org

1, 1, 0, 1, 1, 3, 13, 24, 67, 252, 1795, 4038, 16812, 61750, 349806, 3485026, 10391070, 49433135, 240064988, 1282012986, 9167581934, 131550811985, 459677212302, 2707382738558, 14318807586215, 94084166753923, 601900541189696, 5894253303715121
Offset: 0

Views

Author

Alois P. Heinz, Aug 25 2015

Keywords

Examples

			a(4) = 1: 0001.
a(5) = 3: 00001, 00011, 00101.
a(6) = 13: 000001, 000011, 000101, 000112, 000121, 000122, 001012, 001021, 001022, 001102, 001201, 001202, 010102.
a(7) = 24: 0000001, 0000011, 0000101, 0000111, 0000112, 0000121, 0000122, 0001001, 0001011, 0001012, 0001021, 0001022, 0001101, 0001102, 0001201, 0001202, 0010011, 0010012, 0010021, 0010022, 0010101, 0010102, 0010201, 0010202.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n, i, g, d, j) option remember; `if`(i*(i+1)/20
           and gn, 0, binomial(n/j, i/j)*b(n-i, i-1, igcd(i, g), d, j))))
        end:
    a:= n-> `if`(n=0, 1, add(add((f-> `if`(f=0, 0, f*b(n$2, 0, d, j)))(
                         mobius(j)), j=divisors(d)), d=divisors(n))/n):
    seq(a(n), n=0..30);
  • Mathematica
    a[0] = 1; a[n_] := With[{P = Product[1 + x^k/k!, {k, 1, n}] + O[x]^(n+1) // Normal}, DivisorSum[n, MoebiusMu[n/#]*#!*Coefficient[P, x, #]&]/n];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, May 28 2018, after Andrew Howroyd *)
  • PARI
    a(n)={if(n==0, 1, my(p=prod(k=1, n, (1+x^k/k!) + O(x*x^n))); sumdiv(n, d, moebius(n/d)*d!*polcoeff(p, d))/n)} \\ Andrew Howroyd, Dec 21 2017

Formula

a(n) = (1/n) * Sum_{d | n} moebius(n/d) * A007837(d) for n>0. - Andrew Howroyd, Dec 21 2017

A339677 Partition array: T(n, k) is the number of aperiodic necklaces (Lyndon words) on a multiset of colored beads (of size n) whose color multiplicities form the k-th partition of n in Abramowitz-Stegun order.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 1, 3, 6, 0, 1, 2, 4, 6, 12, 24, 0, 1, 2, 3, 5, 10, 14, 20, 30, 60, 120, 0, 1, 3, 5, 6, 15, 20, 30, 30, 60, 90, 120, 180, 360, 720, 0, 1, 3, 7, 8, 7, 21, 35, 51, 70, 42, 105, 140, 210, 312, 210, 420, 630, 840, 1260, 2520, 5040, 0, 1, 4, 9, 14, 8, 28, 56, 70, 84, 140
Offset: 1

Views

Author

Álvar Ibeas, Dec 12 2020

Keywords

Comments

As in A212359, A072605, and A261600, for each partition, the base set of beads is fixed.
Abuse of notation: we write T(n, L) for T(n, k), where L is the k-th partition of n in A-St order. We do accordingly for A036038 and A212359.

Examples

			Array begins:
  k:  1 2 3 4 5  6  7  8  9 10  11  12  13  14  15
      --------------------------------------------
n=1:  1
n=2:  0 1
n=3:  0 1 2
n=4:  0 1 1 3 6
n=5:  0 1 2 4 6 12 24
n=6:  0 1 2 3 5 10 14 20 30 60 120
n=7:  0 1 3 5 6 15 20 30 30 60  90 120 180 360 720
Consider partition L = (4, 2). There are 3 = A212359(6, L) necklaces on the bead set {a^4, b^2}: (aaaabb), (aaabab), and (aabaab). The latter has a period smaller than its size (3 < 6), whereas the other two are aperiodic. Hence, T(6, L) = 2.
T(n, (1,...,1)) = A212359(n, (1,...,1)) = (n-1)!, counting necklaces with n beads, each in a different color.
		

Crossrefs

Programs

  • PARI
    C(sig)={my(n=vecsum(sig)); sumdiv(gcd(sig), d, moebius(d)*(n/d)!/prod(i=1, #sig, (sig[i]/d)!))/n}
    Row(n)=[C(Vec(p)) | p<-partitions(n)]
    for(n=1, 7, print(Row(n))) \\ Andrew Howroyd, Dec 14 2020

Formula

Let L be a partition of n and d be the gcd of its parts. Then,
T(n, L) = n^(-1) * Sum_{v|d} mu(v) * A036038(n/v, L/v), where L/v is the partition obtained from L after dividing each part by v.
T(n, L) = Sum_{v|d} mu(v) * A212359(n/v, L/v).
T(n, L) = n^(-1) * A036038(n, L) - Sum_{1
T(n,k) = A298941(A036035(n,k)) = A318808(A185974(n,k)). - Andrew Howroyd, Dec 14 2020
Showing 1-5 of 5 results.