cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261608 G.f.: Sum_{n=-oo..+oo, n<>0} x^(n^2) / (1 - x^n)^(n+1).

Original entry on oeis.org

2, 1, 4, 5, 6, 6, 8, 16, 12, 15, 12, 32, 14, 28, 32, 52, 18, 55, 20, 74, 72, 66, 24, 160, 28, 91, 140, 146, 30, 205, 32, 271, 244, 153, 72, 442, 38, 190, 392, 563, 42, 518, 44, 505, 788, 276, 48, 1510, 52, 451, 852, 896, 54, 1086, 728, 1748, 1180, 435, 60, 3291, 62, 496, 1648, 2867, 1848, 2101, 68, 2481, 2072, 1953, 72, 7634
Offset: 1

Views

Author

Paul D. Hanna, Aug 26 2015

Keywords

Examples

			G.f.: A(x) = 2*x + x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 6*x^6 + 8*x^7 + 16*x^8 + 12*x^9 + 15*x^10 + 12*x^11 + 32*x^12 + 14*x^13 + 28*x^14 +...
where A(x) = N(x) + P(x) such that
N(x) = x*(x-1)^0 + x^2*(x^2-1) + x^3*(x^3-1)^2 + x^4*(x^4-1)^3 + x^5*(x^5-1)^4 + x^6*(x^6-1)^5 + x^7*(x^7-1)^6 + x^8*(x^8-1)^7 +...
P(x) = x/(1-x)^2 + x^4/(1-x^2)^3 + x^9/(1-x^3)^4 + x^16/(1-x^4)^5 + x^25/(1-x^5)^6 + x^36/(1-x^6)^7 + x^49/(1-x^7)^8 +...
explicitly,
N(x) = x - x^2 + x^3 + x^5 - 3*x^6 + x^7 + 2*x^8 + 2*x^9 - 5*x^10 + x^11 + x^12 + x^13 - 7*x^14 + 7*x^15 + 7*x^16 + x^17 - 19*x^18 + x^19 + 4*x^20 +...
P(x) = x + 2*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 9*x^6 + 7*x^7 + 14*x^8 + 10*x^9 + 20*x^10 + 11*x^11 + 31*x^12 + 13*x^13 + 35*x^14 + 25*x^15 +...
		

Crossrefs

Cf. A261605.

Programs

  • PARI
    {a(n) = polcoeff(sum(m=-n-1, n+1, if(m!=0, x^(m^2)/(1-x^m +x*O(x^n))^(m+1))), n)}
    for(n=1, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff(sum(m=-n-1, n+1, if(m!=0, x^m*(x^m-1 +x*O(x^n))^(m-1))), n)}
    for(n=1, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff(sum(m=-n-1, n+1, x^(m^2)/(1+x^m +x*O(x^n))^m), n)}
    for(n=1, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff(sum(m=-n-1, n+1, (1 + x^m +x*O(x^n))^m), n)}
    for(n=1, 60, print1(a(n), ", "))

Formula

G.f.: Sum_{n=-oo..+oo, n<>0} x^n * (x^n - 1)^(n-1).
G.f.: Sum_{n=-oo..+oo} x^(n^2)/(1 + x^n)^n, where the sum is taken to exclude the coefficient of x^0.
G.f.: Sum_{n=-oo..+oo} (1 + x^n)^n, where the sum is taken to exclude the coefficient of x^0.
G.f.: x * d/dx Sum_{n=-oo..+oo, n<>0} (1/n^2) * x^(n^2)/(1 - x^n)^n. - Paul D. Hanna, Nov 16 2017