cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A261605 G.f.: Sum_{n=-oo..+oo} x^(n^2) / (1 - x^n)^n.

Original entry on oeis.org

1, 2, -1, 4, -1, 6, -6, 8, 2, 12, -15, 12, 8, 14, -28, 32, 22, 18, -55, 20, 34, 72, -66, 24, 44, 28, -91, 140, 62, 30, -205, 32, 209, 244, -153, 72, -98, 38, -190, 392, 443, 42, -518, 44, -1, 788, -276, 48, 506, 52, -451, 852, -196, 54, -1086, 728, 1636, 1180, -435, 60, -1691
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2015

Keywords

Examples

			G.f.: A(x) = 1 + 2*x - x^2 + 4*x^3 - x^4 + 6*x^5 - 6*x^6 + 8*x^7 + 2*x^8 + 12*x^9 - 15*x^10 + 12*x^11 + 8*x^12 + 14*x^13 - 28*x^14 + 32*x^15 + 22*x^16 +...
where A(x) = 1 + N(x) + P(x) such that
N(x) = (x-1) + (x^2-1)^2 + (x^3-1)^3 + (x^4-1)^4 + (x^5-1)^5 + (x^6-1)^6 +...
P(x) = x/(1-x) + x^4/(1-x^2)^2 + x^9/(1-x^3)^3 + x^16/(1-x^4)^4 + x^25/(1-x^5)^5 +...
explicitly,
N(x) = x - 2*x^2 + 3*x^3 - 3*x^4 + 5*x^5 - 9*x^6 + 7*x^7 - 2*x^8 + 10*x^9 - 20*x^10 + 11*x^11 - x^12 + 13*x^13 - 35*x^14 + 25*x^15 + 13*x^16 +...
P(x) = x + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + x^7 + 4*x^8 + 2*x^9 + 5*x^10 + x^11 + 9*x^12 + x^13 + 7*x^14 + 7*x^15 + 9*x^16 +...+ A143862(n)*x^n +...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq(add( (-1)^(n/d+d)*binomial(d, n/d) + binomial(n/d-1, d-1), d in divisors(n)), n = 1..60); # Peter Bala, Mar 03 2025
  • PARI
    {a(n) = polcoeff(sum(m=-n-2,n+2,x^(m^2)/(1-x^m +x*O(x^n))^m), n)}
    for(n=0,60,print1(a(n),", "))
    
  • PARI
    {a(n) = polcoeff(sum(m=-n-2,n+2,(x^m-1 +x*O(x^n))^m), n)}
    for(n=0,60,print1(a(n),", "))
    
  • PARI
    {a(n) = polcoeff(1/2 + sum(m=-n-2,n+2,x^(m^2)/(1+x^m +x*O(x^n))^(m+1)), n)}
    for(n=0,60,print1(a(n),", "))
    
  • PARI
    {a(n) = polcoeff(1/2 + sum(m=-n-2,n+2,x^m*(1+x^m +x*O(x^n))^(m-1)), n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: Sum_{n=-oo..+oo} (x^n - 1)^n.
G.f.: 1/2 + Sum_{n=-oo..+oo} x^(n^2) / (1 + x^n)^(n+1).
G.f.: 1/2 + Sum_{n=-oo..+oo} x^n * (1 + x^n)^(n-1).
From Peter Bala, Mar 03 2025: (Start)
For n >= 1, a(n) = Sum_{d divides n} (-1)^(n/d+d)*binomial(d, n/d) + binomial(n/d-1, d-1).
For odd prime p, a(p) = p + 1, a(2*p) = - p*(p + 1)/2, a(p^2) = p^2 + 3. (End)

A321600 G.f. A(x,y) satisfies: Sum_{n=-oo...+oo} (x^n + y)^n = exp( (1-y) * A(x,y) ) / (1-y), where A(x,y) = Sum_{n>=1} x^n/n * Sum{k=0..n-1} T(n,k)*y^k, written here as a flattened triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

2, -4, 6, 8, -22, 26, -8, 64, -114, 78, 12, -148, 402, -478, 242, -16, 314, -1192, 2070, -1866, 726, 16, -614, 3110, -7334, 9578, -6886, 2186, -16, 1136, -7408, 22680, -39394, 41118, -24546, 6558, 26, -2008, 16694, -63526, 139730, -192622, 167426, -85294, 19682, -24, 3436, -35644, 165176, -444824, 768966, -880314, 655206, -290874, 59046, 24, -5718, 72910, -404402, 1303018, -2731958, 3902538, -3822454, 2486618, -977590, 177146, -32, 9292, -144086, 942646, -3571352, 8871544, -15280722, 18624942, -15945042, 9209454, -3247698, 531438, 28, -14766, 276070, -2108286, 9267104, -26804126, 54364754, -79614078, 84689282, -64399294, 33437042, -10687870, 1594322
Offset: 1

Views

Author

Paul D. Hanna, Nov 21 2018

Keywords

Comments

Related series identity: Sum_{n=-oo..+oo} (x^n + y)^n = Sum_{n=-oo..+oo} x^(n^2)/(1 - y*x^n)^(n+1).
See rectangle A321601 for other related identities.

Examples

			GENERATING FUNCTION.
G.f.: A(x,y) = x*(2) + x^2*(-4 + 6*y)/2 + x^3*(8 - 22*y + 26*y^2)/3 + x^4*(-8 + 64*y - 114*y^2 + 78*y^3)/4 + x^5*(12 - 148*y + 402*y^2 - 478*y^3 + 242*y^4)/5 + x^6*(-16 + 314*y - 1192*y^2 + 2070*y^3 - 1866*y^4 + 726*y^5)/6 + x^7*(16 - 614*y + 3110*y^2 - 7334*y^3 + 9578*y^4 - 6886*y^5 + 2186*y^6)/7 + x^8*(-16 + 1136*y - 7408*y^2 + 22680*y^3 - 39394*y^4 + 41118*y^5 - 24546*y^6 + 6558*y^7)/8 + x^9*(26 - 2008*y + 16694*y^2 - 63526*y^3 + 139730*y^4 - 192622*y^5 + 167426*y^6 - 85294*y^7 + 19682*y^8)/9 + ...
such that
exp( (1-y)*A(x,y) )/(1-y) = Sum_{n=-oo...+oo} (x^n + y)^n,
which begins
Sum_{n=-oo...+oo} (x^n + y)^n  =  1/(1-y) + 2*x + y*x^2 + 4*y^2*x^3 + (3*y^3 + 2)*x^4 + 6*y^4*x^5 + (5*y^5 + y)*x^6 + 8*y^6*x^7 + (7*y^7 + 9*y^2)*x^8 + (10*y^8 + 2)*x^9 + (9*y^9 + 6*y^3)*x^10 + 12*y^10*x^11 + (11*y^11 + 20*y^4 + y)*x^12 + 14*y^12*x^13 + (13*y^13 + 15*y^5)*x^14 + (16*y^14 + 16*y^2)*x^15 + (15*y^15 + 35*y^6 + 2)*x^16 + ...
Note the related series identity:
Sum_{n=-oo..+oo} (x^n + y)^n  =  Sum_{n=-oo..+oo} x^(n^2)/(1 - y*x^n)^(n+1).
TRIANGLE OF COEFFICIENTS.
This triangle of coefficients T(n,k) of x^n*y^k/n in A(x,y) begins:
2;
-4, 6;
8, -22, 26;
-8, 64, -114, 78;
12, -148, 402, -478, 242;
-16, 314, -1192, 2070, -1866, 726;
16, -614, 3110, -7334, 9578, -6886, 2186;
-16, 1136, -7408, 22680, -39394, 41118, -24546, 6558;
26, -2008, 16694, -63526, 139730, -192622, 167426, -85294, 19682;
-24, 3436, -35644, 165176, -444824, 768966, -880314, 655206, -290874, 59046;
24, -5718, 72910, -404402, 1303018, -2731958, 3902538, -3822454, 2486618, -977590, 177146;
-32, 9292, -144086, 942646, -3571352, 8871544, -15280722, 18624942, -15945042, 9209454, -3247698, 531438;
28, -14766, 276070, -2108286, 9267104, -26804126, 54364754, -79614078, 84689282, -64399294, 33437042, -10687870, 1594322;
-32, 23040, -515050, 4550878, -22960886, 76301928, -179078456, 307580790, -392226346, 370301910, -253279146, 119416758, -34897962, 4782966; ...
in which the leftmost column equals (-1)^(n-1) * (sigma(2*n) - sigma(n)).
RELATED SERIES.
The g.f. A(x,0) of the leftmost column is given by
log( 1 + 2*Sum_{n>=1} x^(n^2) )  =  2*x - 4*x^2/2 + 8*x^3/3 - 8*x^4/4 + 12*x^5/5 - 16*x^6/6 + 16*x^7/7 - 16*x^8/8 + 26*x^9/9 - 24*x^10/10 + 24*x^11/11 - 32*x^12/12 + 28*x^13/13 - 32*x^14/14 + 48*x^15/15 - 32*x^16/16 + ... + A054785(n)*x^n/n + ...
The main diagonal may be generated by
log( (1-x)*(1-x^2)/(1-3*x) )  =  2*x + 6*x^2/2 + 26*x^3/3 + 78*x^4/4 + 242*x^5/5 + 726*x^6/6 + 2186*x^7/7 + 6558*x^8/8 + 19682*x^9/9 + 59046*x^10/10 + 177146*x^11/11 + 531438*x^12/12 + ... + A322116(n)*x^n/n + ...
where A322116(n) = T(n,n-1) for n >= 1.
The o.g.f. of the row sums is
Sum_{n=-oo..+oo} n^2 * x^n * (x^n + 1)^(n-1)  =  2*x + 2*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 36*x^6 + 56*x^7 + 128*x^8 + 108*x^9 + 150*x^10 + 132*x^11 + 384*x^12 + 182*x^13 + 392*x^14 + ... + n*A261608(n)*x^n + ...
At y = -1, we have the logarithmic series
A(x,-1) = 2*x - 10*x^2/2 + 56*x^3/3 - 264*x^4/4 + 1282*x^5/5 - 6184*x^6/6 + 29724*x^7/7 - 142856*x^8/8 + 687008*x^9/9 - 3303510*x^10/10 + 15884376*x^11/11 - 76378248*x^12/12 + ... + ( Sum_{k=0..n-1} T(n,k) * (-1)^k ) * x^n/n + ...
where (1/2) * exp( 2*A(x,-1) )  =  Sum_{n=-oo..+oo} (x^n - 1)^n - (-1)^n/2  =  1/2 + 2*x - x^2 + 4*x^3 - x^4 + 6*x^5 - 6*x^6 + 8*x^7 + 2*x^8 + 12*x^9 - 15*x^10 + 12*x^11 + 8*x^12 + ... + A261605(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {Q(m) = sum(n=-m-1,m+1, (x^n + y)^n +O(x^(m+2)))}
    {T(n,k) = my(LOG=log((1-y)*Q(n) + y^(n+2))); n*polcoeff( polcoeff( LOG/(1-y), n,x), k,y)}
    for(n=1,16, for(k=0,n-1, print1( T(n,k), ", "));print(""))

Formula

A(x,0) = log( 1 + 2*Sum_{n>=1} x^(n^2) ), the logarithm of the theta_3(x) series.
T(n,0) = (-1)^(n-1) * (sigma(2*n) - sigma(n)), for n >= 1.
Diagonal: Sum_{n>=1} T(n,n-1)*x^n/n = log( (1-x)*(1-x^2)/(1-3*x) ).
Row sums: Sum_{k=0..n-1} T(n,k) = n * A261608(n) for n >= 1, where A261608 is defined by g.f.: Sum_{n=-oo..+oo} (x^n + 1)^n (excluding coefficients of x^0).
A(x,-1) = (1/2) * log( 2 * Sum_{n=-oo..+oo} (x^n - 1)^n - (-1)^n/2 ).

A292180 G.f.: Sum_{n=-oo..+oo} (1 + x^n)^n / (1 - x^n)^n, ignoring the constant term.

Original entry on oeis.org

4, 0, 16, 16, 24, 0, 32, 96, 116, 0, 48, 192, 56, 0, 608, 704, 72, 0, 80, 480, 1408, 0, 96, 3712, 2108, 0, 2720, 896, 120, 0, 128, 9600, 4672, 0, 17088, 12112, 152, 0, 7392, 20800, 168, 0, 176, 2112, 63032, 0, 192, 134400, 57828, 0, 15648, 2912, 216, 0, 130336, 69888, 21440, 0, 240, 317056, 248, 0, 556960, 428800, 282576, 0, 272, 4896, 36992, 0, 288, 1029600, 296, 0, 599024, 6080, 1859712, 0
Offset: 1

Views

Author

Paul D. Hanna, Sep 24 2017

Keywords

Comments

a(4*n-2) = 0 for n>=1.
a(n) is divisible by 4 for n>=1.
a((2*n-1)^2)/4 is odd for n>=1 (conjecture).

Examples

			G.f.: A(x) = 4*x + 16*x^3 + 16*x^4 + 24*x^5 + 32*x^7 + 96*x^8 + 116*x^9 + 48*x^11 + 192*x^12 + 56*x^13 + 608*x^15 + 704*x^16 + 72*x^17 + 80*x^19 + 480*x^20 + 1408*x^21 + 96*x^23 + 3712*x^24 + 2108*x^25 + 2720*x^27 + 896*x^28 + 120*x^29 + 128*x^31 + 9600*x^32 + 4672*x^33 + 17088*x^35 + 12112*x^36 + 152*x^37 + 7392*x^39 + 20800*x^40 +...
where A(x) = Sum_{n=-oo..+oo} (1 + x^n)^n / (1 - x^n)^n, ignoring constant terms.
G.f. A(x) = P(x) + Q(x), where
P(x) = Sum_{n>=1} (1 + x^n)^n / (1 - x^n)^n - 1,
explicitly,
P(x) = 2*x + 6*x^2 + 8*x^3 + 18*x^4 + 12*x^5 + 44*x^6 + 16*x^7 + 66*x^8 + 58*x^9 + 92*x^10 + 24*x^11 + 276*x^12 + 28*x^13 + 156*x^14 + 304*x^15 + 386*x^16 + 36*x^17 + 674*x^18 + 40*x^19 + 1092*x^20 + 704*x^21 + 332*x^22 + 48*x^23 + 2852*x^24 + 1054*x^25 + 444*x^26 + 1360*x^27 + 3124*x^28 + 60*x^29 + 6648*x^30 + 64*x^31 + 4866*x^32 + 2336*x^33 + 716*x^34 + 8544*x^35 + 15494*x^36 + 76*x^37 + 876*x^38 + 3696*x^39 + 25796*x^40 +...
and
Q(x) = Sum_{n>=1} (-1)^n * (1 - x^n)^n / (1 + x^n)^n - (-1)^n,
explicitly,
Q(x) = 2*x - 6*x^2 + 8*x^3 - 2*x^4 + 12*x^5 - 44*x^6 + 16*x^7 + 30*x^8 + 58*x^9 - 92*x^10 + 24*x^11 - 84*x^12 + 28*x^13 - 156*x^14 + 304*x^15 + 318*x^16 + 36*x^17 - 674*x^18 + 40*x^19 - 612*x^20 + 704*x^21 - 332*x^22 + 48*x^23 + 860*x^24 + 1054*x^25 - 444*x^26 + 1360*x^27 - 2228*x^28 + 60*x^29 - 6648*x^30 + 64*x^31 + 4734*x^32 + 2336*x^33 - 716*x^34 + 8544*x^35 - 3382*x^36 + 76*x^37 - 876*x^38 + 3696*x^39 - 4996*x^40 +...
Terms at square positions divided by 4 begin:
a(n^2)/4 = [1, 4, 29, 176, 527, 3028, 14457, 107200, 446745, 2392604, 13286165, 140564336, 415382567, 2333455268, 17078911507, 78663453440, 419472490547, 2377516612900, 13482186743565, 78663154105296, 437169506932981, 2481447593907572, 14146164790774889, 161511806183206336, 460995825168188653, 2634869356953946428, 15071070681878977525, 86632929673574593072, 494051395886263605335, 2955861929786748934348, 16234283204352299108321, ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A,Ox=x*O(x^n)); A = sum(n=-n-1,n+1, if(n==0,0, (1 + x^n +Ox)^n/(1-x^n +Ox)^n - 1/2 +Ox )); polcoeff(A,n)}
    for(n=1,80,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A,Ox=x*O(x^n)); A = sum(m=1,n+1, ((1+x^m +Ox)^(2*m) + (-1)^m*(1 - x^m +Ox)^(2*m))/(1 - x^(2*m) +Ox)^m - 1 ); polcoeff(A,n)}
    for(n=1,80,print1(a(n),", "))

Formula

G.f.: Sum_{n>=1} ( (1 + x^n)^(2*n) + (-1)^n*(1 - x^n)^(2*n) ) / (1 - x^(2*n))^n - (1 + (-1)^n).
Showing 1-3 of 3 results.