A322116
Main diagonal of triangle A321600; a(n) = A321600(n,n-1) for n >= 1.
Original entry on oeis.org
2, 6, 26, 78, 242, 726, 2186, 6558, 19682, 59046, 177146, 531438, 1594322, 4782966, 14348906, 43046718, 129140162, 387420486, 1162261466, 3486784398, 10460353202, 31381059606, 94143178826, 282429536478, 847288609442, 2541865828326, 7625597484986, 22876792454958, 68630377364882, 205891132094646, 617673396283946, 1853020188851838, 5559060566555522, 16677181699666566
Offset: 1
G.f.: A(x) = 2*x + 6*x^2 + 26*x^3 + 78*x^4 + 242*x^5 + 726*x^6 + 2186*x^7 + 6558*x^8 + 19682*x^9 + 59046*x^10 + ...
L.g.f.: L(x) = log( (1-x)*(1-x^2)/(1-3*x) ) = 2*x + 6*x^2/2 + 26*x^3/3 + 78*x^4/4 + 242*x^5/5 + 726*x^6/6 + 2186*x^7/7 + 6558*x^8/8 + 19682*x^9/9 + 59046*x^10/10 + 177146*x^11/11 + ... + A321600(n,n-1)*x^n/n + ...
such that
exp(L(x)) = 1 + 2*x + 5*x^2 + 16*x^3 + 48*x^4 + 144*x^5 + 432*x^6 + 1296*x^7 + 3888*x^8 + 11664*x^9 + 34992*x^10 + 104976*x^11 + ... + A257970(n)*x^n + ...
exp(L(x)/2) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 44*x^5 + 122*x^6 + 342*x^7 + 966*x^8 + 2746*x^9 + 7846*x^10 + 22514*x^11 + 64836*x^12 + ... + A105696(n)*x^n + ...
-
{a(n) = n*polcoeff( log((1 - x)*(1 - x^2)/(1 - 3*x +x*O(x^n))),n)}
for(n=1,40,print1(a(n),", "))
A321601
G.f.: A(x,y) = Sum_{n=-oo...+oo} (x^n + y)^n = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^(n^2 + n*k) * y^k, written here as a rectangle of coefficients T(n,k) read by antidiagonals.
Original entry on oeis.org
1, 2, 1, 2, 1, 1, 2, 1, 4, 1, 2, 1, 9, 3, 1, 2, 1, 16, 6, 6, 1, 2, 1, 25, 10, 20, 5, 1, 2, 1, 36, 15, 50, 15, 8, 1, 2, 1, 49, 21, 105, 35, 35, 7, 1, 2, 1, 64, 28, 196, 70, 112, 28, 10, 1, 2, 1, 81, 36, 336, 126, 294, 84, 54, 9, 1, 2, 1, 100, 45, 540, 210, 672, 210, 210, 45, 12, 1, 2, 1, 121, 55, 825, 330, 1386, 462, 660, 165, 77, 11, 1, 2, 1, 144, 66, 1210, 495, 2640, 924, 1782, 495, 352, 66, 14, 1, 2, 1, 169, 78, 1716, 715, 4719, 1716, 4290, 1287, 1287, 286, 104, 13, 1, 2, 1, 196, 91, 2366, 1001, 8008, 3003, 9438, 3003, 4004, 1001, 546, 91, 16, 1, 2, 1, 225, 105, 3185, 1365, 13013, 5005, 19305, 6435, 11011, 3003, 2275, 455, 135, 15, 1
Offset: 0
G.f.: A(x,y) = Sum_{n=-oo...+oo} (x^n + y)^n = 1/(1 - y) + x*(2) + x^2*(y) + x^3*(4*y^2) + x^4*(2 + 3*y^3) + x^5*(6*y^4) + x^6*(y + 5*y^5) + x^7*(8*y^6) + x^8*(9*y^2 + 7*y^7) + x^9*(2 + 10*y^8) + x^10*(6*y^3 + 9*y^9) + x^11*(12*y^10) + x^12*(y + 20*y^4 + 11*y^11) + x^13*(14*y^12) + x^14*(15*y^5 + 13*y^13) + x^15*(16*y^2 + 16*y^14) + x^16*(2 + 35*y^6 + 15*y^15) + x^17*(18*y^16) + x^18*(10*y^3 + 28*y^7 + 17*y^17) + x^19*(20*y^18) + x^20*(y + 54*y^8 + 19*y^19) + x^21*(50*y^4 + 22*y^20) + x^22*(45*y^9 + 21*y^21) + x^23*(24*y^22) + x^24*(25*y^2 + 35*y^5 + 77*y^10 + 23*y^23) + x^25*(2 + 26*y^24) + x^26*(66*y^11 + 25*y^25) + x^27*(112*y^6 + 28*y^26) + x^28*(15*y^3 + 104*y^12 + 27*y^27) + x^29*(30*y^28) + x^30*(y + 84*y^7 + 91*y^13 + 29*y^29) + x^31*(32*y^30) + x^32*(105*y^4 + 135*y^14 + 31*y^31) + x^33*(210*y^8 + 34*y^32) + x^34*(120*y^15 + 33*y^33) + x^35*(36*y^2 + 36*y^34) + x^36*(2 + 70*y^5 + 165*y^9 + 170*y^16 + 35*y^35) + ...
AS A RECTANGLE.
This sequence presents the coefficients of A(x,y) in the compact form
(*) A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^(n^2 + n*k) * y^k,
so that this table of coefficients T(n,k) of x^(n^2 + n*k) * y^k in A(x,y) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, ...;
2, 1, 9, 6, 20, 15, 35, 28, 54, 45, 77, 66, 104, ...;
2, 1, 16, 10, 50, 35, 112, 84, 210, 165, 352, 286, ...;
2, 1, 25, 15, 105, 70, 294, 210, 660, 495, 1287, 1001, ...;
2, 1, 36, 21, 196, 126, 672, 462, 1782, 1287, 4004, 3003, ...;
2, 1, 49, 28, 336, 210, 1386, 924, 4290, 3003, 11011, 8008, ...;
2, 1, 64, 36, 540, 330, 2640, 1716, 9438, 6435, 27456, ...;
2, 1, 81, 45, 825, 495, 4719, 3003, 19305, 12870, 63206, ...;
2, 1, 100, 55, 1210, 715, 8008, 5005, 37180, 24310, 136136, ...;
2, 1, 121, 66, 1716, 1001, 13013, 8008, 68068, 43758, 277134, ...;
...
where the g.f. of column k is (1+x)/( (1 - (-1)^k*x) * (1-x)^k ) for k >= 0.
Thus, for column k > 0,
if k odd: T(n,k) = binomial(n+k-1,k-1),
if k even: T(n,k) = binomial(n+k-1,k-1)*(2*n+k)/k.
...
-
/* Table of coefficients in Sum_{n=-oo...+oo} (x^n + y)^n */
ROWS=12
{Q(n, k) = polcoeff(polcoeff( sum(m=-n-k, n+k, (x^m + y +O(x^(n+1)))^m ), n, x) +O(y^(k+1)), k, y)}
{T(n,k) = polcoeff( sum(j=0, k, Q(n^2 + n*j,j)*z^j +O(z^(k+1))), k, z)}
for(n=0, ROWS, for(k=0, ROWS, print1(T(n, k), ", ")); print(""))
-
/* Using binomial formula for terms T(n,k) */
ROWS=12
{T(n,k) = if(k==0, if(n==0,1,2),
if(k%2==1, binomial(n+k-1,k-1), binomial(n+k-1,k-1)*(2*n+k)/k))}
for(n=0, ROWS, for(k=0, ROWS, print1(T(n, k), ", ")); print(""))
Showing 1-2 of 2 results.
Comments