cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322116 Main diagonal of triangle A321600; a(n) = A321600(n,n-1) for n >= 1.

Original entry on oeis.org

2, 6, 26, 78, 242, 726, 2186, 6558, 19682, 59046, 177146, 531438, 1594322, 4782966, 14348906, 43046718, 129140162, 387420486, 1162261466, 3486784398, 10460353202, 31381059606, 94143178826, 282429536478, 847288609442, 2541865828326, 7625597484986, 22876792454958, 68630377364882, 205891132094646, 617673396283946, 1853020188851838, 5559060566555522, 16677181699666566
Offset: 1

Views

Author

Paul D. Hanna, Nov 26 2018

Keywords

Comments

Triangle A321600 describes log( (1-y)*Sum_{n=-oo...+oo} (x^n + y)^n )/(1-y).

Examples

			G.f.: A(x) = 2*x + 6*x^2 + 26*x^3 + 78*x^4 + 242*x^5 + 726*x^6 + 2186*x^7 + 6558*x^8 + 19682*x^9 + 59046*x^10 + ...
L.g.f.: L(x)  =  log( (1-x)*(1-x^2)/(1-3*x) )  =  2*x + 6*x^2/2 + 26*x^3/3 + 78*x^4/4 + 242*x^5/5 + 726*x^6/6 + 2186*x^7/7 + 6558*x^8/8 + 19682*x^9/9 + 59046*x^10/10 + 177146*x^11/11 + ... + A321600(n,n-1)*x^n/n + ...
such that
exp(L(x)) = 1 + 2*x + 5*x^2 + 16*x^3 + 48*x^4 + 144*x^5 + 432*x^6 + 1296*x^7 + 3888*x^8 + 11664*x^9 + 34992*x^10 + 104976*x^11 + ... + A257970(n)*x^n + ...
exp(L(x)/2) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 44*x^5 + 122*x^6 + 342*x^7 + 966*x^8 + 2746*x^9 + 7846*x^10 + 22514*x^11 + 64836*x^12 + ... + A105696(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = n*polcoeff( log((1 - x)*(1 - x^2)/(1 - 3*x +x*O(x^n))),n)}
    for(n=1,40,print1(a(n),", "))

Formula

L.g.f.: log( (1 - x)*(1 - x^2)/(1 - 3*x) ).
G.f.: 2*x*(1 + 3*x^2)/((1 - x^2)*(1 - 3*x)).

A321601 G.f.: A(x,y) = Sum_{n=-oo...+oo} (x^n + y)^n = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^(n^2 + n*k) * y^k, written here as a rectangle of coefficients T(n,k) read by antidiagonals.

Original entry on oeis.org

1, 2, 1, 2, 1, 1, 2, 1, 4, 1, 2, 1, 9, 3, 1, 2, 1, 16, 6, 6, 1, 2, 1, 25, 10, 20, 5, 1, 2, 1, 36, 15, 50, 15, 8, 1, 2, 1, 49, 21, 105, 35, 35, 7, 1, 2, 1, 64, 28, 196, 70, 112, 28, 10, 1, 2, 1, 81, 36, 336, 126, 294, 84, 54, 9, 1, 2, 1, 100, 45, 540, 210, 672, 210, 210, 45, 12, 1, 2, 1, 121, 55, 825, 330, 1386, 462, 660, 165, 77, 11, 1, 2, 1, 144, 66, 1210, 495, 2640, 924, 1782, 495, 352, 66, 14, 1, 2, 1, 169, 78, 1716, 715, 4719, 1716, 4290, 1287, 1287, 286, 104, 13, 1, 2, 1, 196, 91, 2366, 1001, 8008, 3003, 9438, 3003, 4004, 1001, 546, 91, 16, 1, 2, 1, 225, 105, 3185, 1365, 13013, 5005, 19305, 6435, 11011, 3003, 2275, 455, 135, 15, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 25 2018

Keywords

Comments

Related triangle A321600 describes log( (1-y)*Sum_{n=-oo...+oo} (x^n + y)^n ) / (1-y).

Examples

			G.f.: A(x,y)  =  Sum_{n=-oo...+oo} (x^n + y)^n  =  1/(1 - y) + x*(2) + x^2*(y) + x^3*(4*y^2) + x^4*(2 + 3*y^3) + x^5*(6*y^4) + x^6*(y + 5*y^5) + x^7*(8*y^6) + x^8*(9*y^2 + 7*y^7) + x^9*(2 + 10*y^8) + x^10*(6*y^3 + 9*y^9) + x^11*(12*y^10) + x^12*(y + 20*y^4 + 11*y^11) + x^13*(14*y^12) + x^14*(15*y^5 + 13*y^13) + x^15*(16*y^2 + 16*y^14) + x^16*(2 + 35*y^6 + 15*y^15) + x^17*(18*y^16) + x^18*(10*y^3 + 28*y^7 + 17*y^17) + x^19*(20*y^18) + x^20*(y + 54*y^8 + 19*y^19) + x^21*(50*y^4 + 22*y^20) + x^22*(45*y^9 + 21*y^21) + x^23*(24*y^22) + x^24*(25*y^2 + 35*y^5 + 77*y^10 + 23*y^23) + x^25*(2 + 26*y^24) + x^26*(66*y^11 + 25*y^25) + x^27*(112*y^6 + 28*y^26) + x^28*(15*y^3 + 104*y^12 + 27*y^27) + x^29*(30*y^28) + x^30*(y + 84*y^7 + 91*y^13 + 29*y^29) + x^31*(32*y^30) + x^32*(105*y^4 + 135*y^14 + 31*y^31) + x^33*(210*y^8 + 34*y^32) + x^34*(120*y^15 + 33*y^33) + x^35*(36*y^2 + 36*y^34) + x^36*(2 + 70*y^5 + 165*y^9 + 170*y^16 + 35*y^35) + ...
AS A RECTANGLE.
This sequence presents the coefficients of A(x,y) in the compact form
(*) A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^(n^2 + n*k) * y^k,
so that this table of coefficients T(n,k) of x^(n^2 + n*k) * y^k in A(x,y) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, ...;
2, 1, 9, 6, 20, 15, 35, 28, 54, 45, 77, 66, 104, ...;
2, 1, 16, 10, 50, 35, 112, 84, 210, 165, 352, 286, ...;
2, 1, 25, 15, 105, 70, 294, 210, 660, 495, 1287, 1001, ...;
2, 1, 36, 21, 196, 126, 672, 462, 1782, 1287, 4004, 3003, ...;
2, 1, 49, 28, 336, 210, 1386, 924, 4290, 3003, 11011, 8008, ...;
2, 1, 64, 36, 540, 330, 2640, 1716, 9438, 6435, 27456, ...;
2, 1, 81, 45, 825, 495, 4719, 3003, 19305, 12870, 63206, ...;
2, 1, 100, 55, 1210, 715, 8008, 5005, 37180, 24310, 136136, ...;
2, 1, 121, 66, 1716, 1001, 13013, 8008, 68068, 43758, 277134, ...;
...
where the g.f. of column k is (1+x)/( (1 - (-1)^k*x) * (1-x)^k ) for k >= 0.
Thus, for column k > 0,
if k odd: T(n,k) = binomial(n+k-1,k-1),
if k even: T(n,k) = binomial(n+k-1,k-1)*(2*n+k)/k.
...
		

Crossrefs

Cf. A321600 (log).

Programs

  • PARI
    /* Table of coefficients in Sum_{n=-oo...+oo} (x^n + y)^n */
    ROWS=12
    {Q(n, k) = polcoeff(polcoeff( sum(m=-n-k, n+k, (x^m + y +O(x^(n+1)))^m ), n, x) +O(y^(k+1)), k, y)}
    {T(n,k) = polcoeff( sum(j=0, k, Q(n^2 + n*j,j)*z^j +O(z^(k+1))), k, z)}
    for(n=0, ROWS, for(k=0, ROWS, print1(T(n, k), ", ")); print(""))
    
  • PARI
    /* Using binomial formula for terms T(n,k) */
    ROWS=12
    {T(n,k) = if(k==0, if(n==0,1,2),
    if(k%2==1, binomial(n+k-1,k-1), binomial(n+k-1,k-1)*(2*n+k)/k))}
    for(n=0, ROWS, for(k=0, ROWS, print1(T(n, k), ", ")); print(""))

Formula

G.f. A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k) * x^(n^2 + n*k) * y^k satisfies
(1) A(x,0) = theta_3(x), a Jacobi theta function.
(2) A(x,y) = Sum_{n=-oo..+oo} (x^n + y)^n.
(3) A(x,y) = Sum_{n=-oo..+oo} x^(n^2)/(1 - x^n*y)^(n+1).
(4) A(x,y) = theta_3(x) + Sum_{n>=0} Sum_{k>=0} x^(n*(n+2*k+1)) * y^(2*k+1) * [ binomial(n+2*k,2*k) + binomial(n+2*k+1,2*k+1)*(n+k+1)/(k+1) * x^n*y ].
FORMULAS FOR TERMS.
The o.g.f. of column k is (1+x)/( (1 - (-1)^k*x) * (1-x)^k ) for k >= 0.
Thus, for column k > 0,
if k odd: T(n,k) = binomial(n+k-1,k-1),
if k even: T(n,k) = binomial(n+k-1,k-1)*(2*n+k)/k.
Antidiagonal sums are [1, 3, 4, 8, 16, ... , 2^n, ...].
Showing 1-2 of 2 results.