cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A260147 G.f. A(x) = Sum_{n=-oo..+oo} x^n * (1 + x^n)^(2*n).

Original entry on oeis.org

1, 2, 1, 5, 1, 6, 8, 8, 1, 25, 12, 12, 29, 14, 36, 77, 1, 18, 151, 20, 71, 135, 166, 24, 121, 236, 287, 307, 30, 30, 1141, 32, 1, 727, 681, 1247, 314, 38, 970, 1652, 1821, 42, 2633, 44, 331, 6590, 1772, 48, 497, 3053, 7146, 6801, 1717, 54, 4051, 7427, 8009, 12389, 3655, 60, 17842, 62, 4496, 42841, 1, 15731, 6470, 68, 19449, 34754, 65781
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2015

Keywords

Comments

Compare to the curious identities:
(1) Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
(2) Sum_{n=-oo..+oo} (-x)^n * (1 + x^n)^n = 0.
Name changed for clarity by Paul D. Hanna, Dec 10 2024; prior name was "G.f.: (1/2) * Sum_{n=-oo..+oo} x^n * (1 + x^n)^n, an even function."

Examples

			G.f.: A(x) = 1 + 2*x^2 + x^4 + 5*x^6 + x^8 + 6*x^10 + 8*x^12 + 8*x^14 + x^16 + 25*x^18 + 12*x^20 + ...
where 2*A(x) = 1 + P(x) + N(x) with
P(x) = x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5 + ...
N(x) = 1/(1+x) + x^2/(1+x^2)^2 + x^6/(1+x^3)^3 + x^12/(1+x^4)^4 + x^20/(1+x^5)^5 + ...
Explicitly,
P(x) = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 + 4*x^9 + 6*x^10 + x^11 + 14*x^12 + x^13 + 8*x^14 + 11*x^15 + 13*x^16 + x^17 + 25*x^18 + x^19 + 22*x^20 + 22*x^21 + 12*x^22 + x^23 + 61*x^24 + 6*x^25 +...+ A217668(n)*x^n + ...
N(x) = 1 - x + 2*x^2 - x^3 - x^4 - x^5 + 5*x^6 - x^7 - 3*x^8 - 4*x^9 + 6*x^10 - x^11 + 2*x^12 - x^13 + 8*x^14 - 11*x^15 - 11*x^16 - x^17 + 25*x^18 - x^19 + 2*x^20 - 22*x^21 + 12*x^22 - x^23 - 3*x^24 - 6*x^25 +...+ A260148(n)*x^n + ...
From _Paul D. Hanna_, Dec 10 2024: (Start)
SPECIFIC VALUES.
A(z) = 0 at z = -0.404783857785183643579648014798209689698619095608142590080356...
  where 0 = Sum_{n=-oo..+oo} z^n * (1 + z^n)^(2*n).
A(t) = 8 at t = 0.66184860446935243758952792459096102121713616089603...
A(t) = 7 at t = 0.64280265347584821638335226655422639958638446962646...
A(t) = 6 at t = 0.61846293982236470622283664293769398297407552626520...
A(t) = 5 at t = 0.58591538561726828976301449562779896617926938759041...
A(t) = 4 at t = 0.53948212974289878102531393938569583066950526874204...
A(t) = 3 at t = 0.46633361832235508894561538442655261465230172977527...
A(t) = 2 at t = 0.33014122063168294490173944063355594394361494532642...
  where 2 = Sum_{n=-oo..+oo} t^n * (1 + t^n)^(2*n).
A(t) = -1 at t = -0.57221202613754835881500708971837082259712665852148...
A(t) = -2 at t = -0.66124771863833308133360587362156745037996654826889...
A(t) = -3 at t = -0.72841228559829175547612598129696947453305714538354...
A(t) = -4 at t = -0.90975449896027994776675798799643226140294233213401...
A(4/5) = 39.597156112579883800797829785472315940190856875500...
A(3/4) = 18.522637966827153559321082877260756270457362912092...
A(2/3) = 8.2917909754417331599016245586686519315443444070756...
A(3/5) = 5.3942577326786364433206097043093210828422082884565...
A(1/2) = 3.3971121875472777749836900920631175982646917998641...
  where A(1/2) = Sum_{n=-oo..+oo} (2^n + 1)^(2*n) / 2^(2*n^2+n).
A(2/5) = 2.4226617866265771206729430879848898772232404418272...
A(1/3) = 2.0164022766484546805373278337731916678136050742206...
  where A(1/3) = Sum_{n=-oo..+oo} (3^n + 1)^(2*n) / 3^(2*n^2+n).
A(1/4) = 1.6529591092151291503041860933179009814428123139546...
  where A(1/4) = Sum_{n=-oo..+oo} (4^n + 1)^(2*n) / 4^(2*n^2+n).
A(1/5) = 1.4841513733060571811336245213703004776194631749017...
  where A(1/5) = Sum_{n=-oo..+oo} (5^n + 1)^(2*n) / 5^(2*n^2+n).
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq(add(binomial(2*n/d, d-1) + (-1)^(n/d+1) * binomial(n/d, 2*d-1), d in divisors(n)), n = 1..70); # Peter Bala, Mar 02 2025
  • Mathematica
    terms = 100; max = 2 terms; 1/2 Sum[x^n*(1 + x^n)^n, {n, -max, max}] + O[x]^max // CoefficientList[#, x^2]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n) = my(A=1); A = sum(k=-2*n-2, 2*n+2, x^k*(1+x^k)^k/2 + O(x^(2*n+2)) ); polcoef(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-2*n-2, 2*n+2, x^(k^2-k) / (1 + x^k)^k /2  + O(x^(2*n+2)) ); polcoef(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-sqrtint(n)-1, n+1, x^k*((1+x^k)^(2*k) + (1-x^k)^(2*k))/2 + O(x^(n+1)) ); polcoef(A, n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-n-1, n+1, x^k*(1+x^k)^(2*k) + O(x^(n+1)) ); polcoef(A, n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-n-1, n+1, x^(2*k^2-k)/(1-x^k + O(x^(n+1)))^(2*k)  ); polcoef(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

The g.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (1 + x^n)^n.
(2) A(x^2) = (1/2) * Sum_{n=-oo..+oo} (-x)^n * (1 - x^n)^n.
(3) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + x^n)^n.
(4) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 - x^n)^n.
(5) A(x) = Sum_{n=-oo..+oo} x^n * (1 + x^n)^(2*n).
(6) A(x) = Sum_{n=-oo..+oo} x^n * (1 - x^n)^(2*n).
(7) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 - x^n)^(2*n).
(8) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + x^n)^(2*n).
a(2^n) = 1 for n > 0 (conjecture).
a(p) = p+1 for primes p > 3 (conjecture).
From Peter Bala, Jan 23 2021: (Start)
The following are conjectural:
A(x^2) = Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1) )^(2*n+1).
Equivalently: A(x^2) = Sum_{n = -oo..+oo} x^(4*n^2 + 2*n)/(1 + x^(2*n+1))^(2*n+1).
a(2*n+1) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1))^(4*n+2)
More generally, for k = 1,2,3,..., a((2^k)*(2*n + 1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1))^(2^(k+1)*(2*n+1)).
a(2*n+1) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 + x^n)^(2*n) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 - x^n)^(2*n).
More generally, for k = 1,2,3,...,
a((2^k)*(2*n+1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 + x^n)^(2^(k+1)*n) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 - x^n)^(2^(k+1)*n).
a(4*n+2) = [x^(4*n+2)] Sum_{n = -oo..+oo} (-1)^n*x^n*(1 + x^n)^(2*n) = [x^(4*n+2)] Sum_{n = -oo..+oo} (-1)^n*x^n*(1 - x^n)^(2*n).
a(n) = [x^(2*n)] Sum_{n = -oo..+oo} (-1)^n*x^(2*n+1)*(1 + (-1)^n* x^(2*n+1) )^(2*n+1).
For k = 1,2,3,...,
a((2^k)*(2*n+1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + (-1)^n* x^(2*n+1) )^(2^(k+1)*(2*n+1)).
(End)
From Peter Bala, Mar 02 2025: (Start)
a(n) = Sum_{d divides n} (binomial(2*n/d, d-1) + (-1)^(n/d+1) * binomial(n/d, 2*d-1)) for n >= 1.
Hence, a(p) = p + 1 for primes p > 3 and a(2^n) = 1 for n > 0 as conjectured above. (End)

A143862 Number of compositions of n such that every part is divisible by number of parts.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 9, 1, 7, 7, 9, 1, 19, 1, 14, 16, 11, 1, 43, 2, 13, 29, 34, 1, 56, 1, 51, 46, 17, 16, 130, 1, 19, 67, 139, 1, 105, 1, 142, 162, 23, 1, 315, 2, 151, 121, 246, 1, 219, 211, 321, 154, 29, 1, 1021, 1, 31, 219, 488, 496, 495, 1, 594, 232, 834, 1, 1439, 1
Offset: 0

Views

Author

Vladeta Jovovic, Sep 03 2008

Keywords

Crossrefs

Programs

  • PARI
    {a(n) = if(n==0,1, sumdiv(n,d, binomial(n/d-1,d-1) ))}
    for(n=0,50, print1(a(n),", ")) \\ Paul D. Hanna, Apr 25 2018

Formula

G.f.: Sum_{k>=0} x^(k^2) / (1 - x^k)^k.
G.f.: 1 + Sum_{n>=1} (1 + x^n)^(n-1) * x^n. - Paul D. Hanna, Jul 09 2019
a(n) = Sum_{d|n} binomial(n/d-1, d-1) for n>0 with a(0) = 1. - Paul D. Hanna, Apr 25 2018
G.f.: 1 + Sum_{n>=1} (x^n/(1-x^n))^n (conjecture). - Joerg Arndt, Jan 04 2024
For prime p, a(p) = 1, a(2*p) = p and a(p^2) = 2. - Peter Bala, Mar 02 2025

Extensions

More terms from Franklin T. Adams-Watters, Apr 09 2009

A261608 G.f.: Sum_{n=-oo..+oo, n<>0} x^(n^2) / (1 - x^n)^(n+1).

Original entry on oeis.org

2, 1, 4, 5, 6, 6, 8, 16, 12, 15, 12, 32, 14, 28, 32, 52, 18, 55, 20, 74, 72, 66, 24, 160, 28, 91, 140, 146, 30, 205, 32, 271, 244, 153, 72, 442, 38, 190, 392, 563, 42, 518, 44, 505, 788, 276, 48, 1510, 52, 451, 852, 896, 54, 1086, 728, 1748, 1180, 435, 60, 3291, 62, 496, 1648, 2867, 1848, 2101, 68, 2481, 2072, 1953, 72, 7634
Offset: 1

Views

Author

Paul D. Hanna, Aug 26 2015

Keywords

Examples

			G.f.: A(x) = 2*x + x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 6*x^6 + 8*x^7 + 16*x^8 + 12*x^9 + 15*x^10 + 12*x^11 + 32*x^12 + 14*x^13 + 28*x^14 +...
where A(x) = N(x) + P(x) such that
N(x) = x*(x-1)^0 + x^2*(x^2-1) + x^3*(x^3-1)^2 + x^4*(x^4-1)^3 + x^5*(x^5-1)^4 + x^6*(x^6-1)^5 + x^7*(x^7-1)^6 + x^8*(x^8-1)^7 +...
P(x) = x/(1-x)^2 + x^4/(1-x^2)^3 + x^9/(1-x^3)^4 + x^16/(1-x^4)^5 + x^25/(1-x^5)^6 + x^36/(1-x^6)^7 + x^49/(1-x^7)^8 +...
explicitly,
N(x) = x - x^2 + x^3 + x^5 - 3*x^6 + x^7 + 2*x^8 + 2*x^9 - 5*x^10 + x^11 + x^12 + x^13 - 7*x^14 + 7*x^15 + 7*x^16 + x^17 - 19*x^18 + x^19 + 4*x^20 +...
P(x) = x + 2*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 9*x^6 + 7*x^7 + 14*x^8 + 10*x^9 + 20*x^10 + 11*x^11 + 31*x^12 + 13*x^13 + 35*x^14 + 25*x^15 +...
		

Crossrefs

Cf. A261605.

Programs

  • PARI
    {a(n) = polcoeff(sum(m=-n-1, n+1, if(m!=0, x^(m^2)/(1-x^m +x*O(x^n))^(m+1))), n)}
    for(n=1, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff(sum(m=-n-1, n+1, if(m!=0, x^m*(x^m-1 +x*O(x^n))^(m-1))), n)}
    for(n=1, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff(sum(m=-n-1, n+1, x^(m^2)/(1+x^m +x*O(x^n))^m), n)}
    for(n=1, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = polcoeff(sum(m=-n-1, n+1, (1 + x^m +x*O(x^n))^m), n)}
    for(n=1, 60, print1(a(n), ", "))

Formula

G.f.: Sum_{n=-oo..+oo, n<>0} x^n * (x^n - 1)^(n-1).
G.f.: Sum_{n=-oo..+oo} x^(n^2)/(1 + x^n)^n, where the sum is taken to exclude the coefficient of x^0.
G.f.: Sum_{n=-oo..+oo} (1 + x^n)^n, where the sum is taken to exclude the coefficient of x^0.
G.f.: x * d/dx Sum_{n=-oo..+oo, n<>0} (1/n^2) * x^(n^2)/(1 - x^n)^n. - Paul D. Hanna, Nov 16 2017

A321600 G.f. A(x,y) satisfies: Sum_{n=-oo...+oo} (x^n + y)^n = exp( (1-y) * A(x,y) ) / (1-y), where A(x,y) = Sum_{n>=1} x^n/n * Sum{k=0..n-1} T(n,k)*y^k, written here as a flattened triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

2, -4, 6, 8, -22, 26, -8, 64, -114, 78, 12, -148, 402, -478, 242, -16, 314, -1192, 2070, -1866, 726, 16, -614, 3110, -7334, 9578, -6886, 2186, -16, 1136, -7408, 22680, -39394, 41118, -24546, 6558, 26, -2008, 16694, -63526, 139730, -192622, 167426, -85294, 19682, -24, 3436, -35644, 165176, -444824, 768966, -880314, 655206, -290874, 59046, 24, -5718, 72910, -404402, 1303018, -2731958, 3902538, -3822454, 2486618, -977590, 177146, -32, 9292, -144086, 942646, -3571352, 8871544, -15280722, 18624942, -15945042, 9209454, -3247698, 531438, 28, -14766, 276070, -2108286, 9267104, -26804126, 54364754, -79614078, 84689282, -64399294, 33437042, -10687870, 1594322
Offset: 1

Views

Author

Paul D. Hanna, Nov 21 2018

Keywords

Comments

Related series identity: Sum_{n=-oo..+oo} (x^n + y)^n = Sum_{n=-oo..+oo} x^(n^2)/(1 - y*x^n)^(n+1).
See rectangle A321601 for other related identities.

Examples

			GENERATING FUNCTION.
G.f.: A(x,y) = x*(2) + x^2*(-4 + 6*y)/2 + x^3*(8 - 22*y + 26*y^2)/3 + x^4*(-8 + 64*y - 114*y^2 + 78*y^3)/4 + x^5*(12 - 148*y + 402*y^2 - 478*y^3 + 242*y^4)/5 + x^6*(-16 + 314*y - 1192*y^2 + 2070*y^3 - 1866*y^4 + 726*y^5)/6 + x^7*(16 - 614*y + 3110*y^2 - 7334*y^3 + 9578*y^4 - 6886*y^5 + 2186*y^6)/7 + x^8*(-16 + 1136*y - 7408*y^2 + 22680*y^3 - 39394*y^4 + 41118*y^5 - 24546*y^6 + 6558*y^7)/8 + x^9*(26 - 2008*y + 16694*y^2 - 63526*y^3 + 139730*y^4 - 192622*y^5 + 167426*y^6 - 85294*y^7 + 19682*y^8)/9 + ...
such that
exp( (1-y)*A(x,y) )/(1-y) = Sum_{n=-oo...+oo} (x^n + y)^n,
which begins
Sum_{n=-oo...+oo} (x^n + y)^n  =  1/(1-y) + 2*x + y*x^2 + 4*y^2*x^3 + (3*y^3 + 2)*x^4 + 6*y^4*x^5 + (5*y^5 + y)*x^6 + 8*y^6*x^7 + (7*y^7 + 9*y^2)*x^8 + (10*y^8 + 2)*x^9 + (9*y^9 + 6*y^3)*x^10 + 12*y^10*x^11 + (11*y^11 + 20*y^4 + y)*x^12 + 14*y^12*x^13 + (13*y^13 + 15*y^5)*x^14 + (16*y^14 + 16*y^2)*x^15 + (15*y^15 + 35*y^6 + 2)*x^16 + ...
Note the related series identity:
Sum_{n=-oo..+oo} (x^n + y)^n  =  Sum_{n=-oo..+oo} x^(n^2)/(1 - y*x^n)^(n+1).
TRIANGLE OF COEFFICIENTS.
This triangle of coefficients T(n,k) of x^n*y^k/n in A(x,y) begins:
2;
-4, 6;
8, -22, 26;
-8, 64, -114, 78;
12, -148, 402, -478, 242;
-16, 314, -1192, 2070, -1866, 726;
16, -614, 3110, -7334, 9578, -6886, 2186;
-16, 1136, -7408, 22680, -39394, 41118, -24546, 6558;
26, -2008, 16694, -63526, 139730, -192622, 167426, -85294, 19682;
-24, 3436, -35644, 165176, -444824, 768966, -880314, 655206, -290874, 59046;
24, -5718, 72910, -404402, 1303018, -2731958, 3902538, -3822454, 2486618, -977590, 177146;
-32, 9292, -144086, 942646, -3571352, 8871544, -15280722, 18624942, -15945042, 9209454, -3247698, 531438;
28, -14766, 276070, -2108286, 9267104, -26804126, 54364754, -79614078, 84689282, -64399294, 33437042, -10687870, 1594322;
-32, 23040, -515050, 4550878, -22960886, 76301928, -179078456, 307580790, -392226346, 370301910, -253279146, 119416758, -34897962, 4782966; ...
in which the leftmost column equals (-1)^(n-1) * (sigma(2*n) - sigma(n)).
RELATED SERIES.
The g.f. A(x,0) of the leftmost column is given by
log( 1 + 2*Sum_{n>=1} x^(n^2) )  =  2*x - 4*x^2/2 + 8*x^3/3 - 8*x^4/4 + 12*x^5/5 - 16*x^6/6 + 16*x^7/7 - 16*x^8/8 + 26*x^9/9 - 24*x^10/10 + 24*x^11/11 - 32*x^12/12 + 28*x^13/13 - 32*x^14/14 + 48*x^15/15 - 32*x^16/16 + ... + A054785(n)*x^n/n + ...
The main diagonal may be generated by
log( (1-x)*(1-x^2)/(1-3*x) )  =  2*x + 6*x^2/2 + 26*x^3/3 + 78*x^4/4 + 242*x^5/5 + 726*x^6/6 + 2186*x^7/7 + 6558*x^8/8 + 19682*x^9/9 + 59046*x^10/10 + 177146*x^11/11 + 531438*x^12/12 + ... + A322116(n)*x^n/n + ...
where A322116(n) = T(n,n-1) for n >= 1.
The o.g.f. of the row sums is
Sum_{n=-oo..+oo} n^2 * x^n * (x^n + 1)^(n-1)  =  2*x + 2*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 36*x^6 + 56*x^7 + 128*x^8 + 108*x^9 + 150*x^10 + 132*x^11 + 384*x^12 + 182*x^13 + 392*x^14 + ... + n*A261608(n)*x^n + ...
At y = -1, we have the logarithmic series
A(x,-1) = 2*x - 10*x^2/2 + 56*x^3/3 - 264*x^4/4 + 1282*x^5/5 - 6184*x^6/6 + 29724*x^7/7 - 142856*x^8/8 + 687008*x^9/9 - 3303510*x^10/10 + 15884376*x^11/11 - 76378248*x^12/12 + ... + ( Sum_{k=0..n-1} T(n,k) * (-1)^k ) * x^n/n + ...
where (1/2) * exp( 2*A(x,-1) )  =  Sum_{n=-oo..+oo} (x^n - 1)^n - (-1)^n/2  =  1/2 + 2*x - x^2 + 4*x^3 - x^4 + 6*x^5 - 6*x^6 + 8*x^7 + 2*x^8 + 12*x^9 - 15*x^10 + 12*x^11 + 8*x^12 + ... + A261605(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {Q(m) = sum(n=-m-1,m+1, (x^n + y)^n +O(x^(m+2)))}
    {T(n,k) = my(LOG=log((1-y)*Q(n) + y^(n+2))); n*polcoeff( polcoeff( LOG/(1-y), n,x), k,y)}
    for(n=1,16, for(k=0,n-1, print1( T(n,k), ", "));print(""))

Formula

A(x,0) = log( 1 + 2*Sum_{n>=1} x^(n^2) ), the logarithm of the theta_3(x) series.
T(n,0) = (-1)^(n-1) * (sigma(2*n) - sigma(n)), for n >= 1.
Diagonal: Sum_{n>=1} T(n,n-1)*x^n/n = log( (1-x)*(1-x^2)/(1-3*x) ).
Row sums: Sum_{k=0..n-1} T(n,k) = n * A261608(n) for n >= 1, where A261608 is defined by g.f.: Sum_{n=-oo..+oo} (x^n + 1)^n (excluding coefficients of x^0).
A(x,-1) = (1/2) * log( 2 * Sum_{n=-oo..+oo} (x^n - 1)^n - (-1)^n/2 ).
Showing 1-4 of 4 results.