cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A143773 Number of partitions of n such that every part is divisible by number of parts.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 1, 5, 1, 4, 3, 6, 1, 8, 1, 7, 5, 6, 1, 14, 2, 7, 8, 11, 1, 17, 1, 14, 11, 9, 3, 29, 1, 10, 15, 23, 1, 28, 1, 23, 25, 12, 1, 51, 2, 20, 25, 32, 1, 44, 11, 39, 31, 15, 1, 94, 1, 16, 40, 52, 19, 64, 1, 57, 45, 44, 1, 126, 1, 19, 83, 74, 6, 90, 1, 124, 63, 21, 1, 186
Offset: 1

Views

Author

Vladeta Jovovic, Aug 31 2008

Keywords

Examples

			The a(18) = 8 partitions are (18), (10 8), (12 6), (14 4), (16 2), (6 6 6), (9 6 3), (12 3 3). - _Gus Wiseman_, Jan 26 2018
		

Crossrefs

Programs

  • Mathematica
    m = 100;
    gf = Sum[x^(k^2)/Product[1-x^(k*i), {i, 1, k}], {k, 1, Sqrt[m]//Ceiling}];
    CoefficientList[gf + O[x]^m, x] // Rest (* Jean-François Alcover, May 13 2019 *)
  • PARI
    Vec(sum(k=1,20,x^(k^2)/prod(i=1,k,1-x^(k*i)+O(x^400)))) \\ Max Alekseyev, May 03 2009

Formula

G.f.: Sum(x^(k^2)/Product(1-x^(k*i), i=1..k), k=1..infinity).
For prime p, a(p) = 1 and a(p^2) = 2. For odd prime p, a(2*p) = (p + 1)/2. - Peter Bala, Mar 03 2025

Extensions

More terms from Max Alekseyev, May 03 2009

A219282 Number of superdiagonal bargraphs with area n.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 9, 13, 18, 25, 35, 49, 68, 93, 126, 170, 229, 308, 413, 551, 731, 965, 1269, 1664, 2177, 2842, 3701, 4806, 6222, 8031, 10337, 13272, 17003, 21740, 27745, 35343, 44936, 57021, 72213, 91274, 115149, 145010, 182309, 228841, 286819, 358964, 448614, 559857, 697694
Offset: 0

Views

Author

Joerg Arndt, Dec 04 2012

Keywords

Comments

Number of compositions n = p(1) + p(2) + ... + p(m) such that p(k) >= k (superdiagonal compositions), see example. - Joerg Arndt, Dec 19 2012
Number of (n-2)-bit binary strings in which the runs of ones are successively (1, 11, 111, 1111, ...), as in for example 00101100111011110011111000... To turn such a string into a composition, add 'X0 to the start of the empty string and the mark ' to the end, replace the runs 1, 11, 111,... with '01, '011, '0111, ... then consider the distances between the marks. - Andrew Woods, Jan 02 2015

Examples

			From _Joerg Arndt_, Dec 19 2012: (Start)
The a(9) = 18 compositions 9 = p(1) + p(2) + ... + p(m) such that p(k) >= k are
[ 1]  [ 1 2 6 ]
[ 2]  [ 1 3 5 ]
[ 3]  [ 1 4 4 ]
[ 4]  [ 1 5 3 ]
[ 5]  [ 1 8 ]
[ 6]  [ 2 2 5 ]
[ 7]  [ 2 3 4 ]
[ 8]  [ 2 4 3 ]
[ 9]  [ 2 7 ]
[10]  [ 3 2 4 ]
[11]  [ 3 3 3 ]
[12]  [ 3 6 ]
[13]  [ 4 2 3 ]
[14]  [ 4 5 ]
[15]  [ 5 4 ]
[16]  [ 6 3 ]
[17]  [ 7 2 ]
[18]  [ 9 ]
(End)
		

Crossrefs

Cf. A063978 (compositions such that p(k) >= k-1 for k >= 2).
Cf. A238873 (superdiagonal partitions), A238394 (strictly superdiagonal partitions), A238874 (strictly superdiagonal compositions), A025147 (strictly superdiagonal partitions into distinct parts).
Cf. A008930 (subdiagonal compositions), A238875 (subdiagonal partitions), A010054 (subdiagonal partitions into distinct parts).
Cf. A098131 (compositions with smallest part >= number of parts; g.f. Sum_{k>=0} x^(k^2)/(1-x)^k).
Cf. A143862 (compositions with every part divisible by number of parts; g.f. Sum_{k>=0} x^(k^2) / (1 - x^k)^k).
Cf. A238860 (partitions with superdiagonal growth), A238861 (compositions with superdiagonal growth), A000009 (partitions into distinct parts have superdiagonal growth by definition).
Cf. A238859 (compositions of n with subdiagonal growth), A238876 (partitions with subdiagonal growth), A001227 (partitions into distinct parts with subdiagonal growth).
Row sums of A305556.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          add(b(n-j, i+1), j=i..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 28 2014
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(k*(k+1)/2) / (1-x)^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 05 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, Sum[b[n-j, i+1], {j, i, n}]]; a[n_] := b[n, 1]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
  • PARI
    N=66; q='q+O('q^N);
    gf=sum(n=0,N, q^(n*(n+1)/2) / (1-q)^n );
    v=Vec(gf)

Formula

G.f.: Sum_{n>=0} q^(n*(n+1)/2) / (1-q)^n.
a(n) = Sum_{k=0..floor((sqrt(8*n+1)-3)/2)} C(n-1-C(k+1,2),k), for n >= 1.

A217668 G.f.: Sum_{n>=0} x^n*(1 + x^n)^n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 1, 5, 4, 6, 1, 14, 1, 8, 11, 13, 1, 25, 1, 22, 22, 12, 1, 61, 6, 14, 37, 50, 1, 77, 1, 73, 56, 18, 36, 175, 1, 20, 79, 211, 1, 135, 1, 188, 232, 24, 1, 421, 8, 236, 137, 313, 1, 307, 331, 422, 172, 30, 1, 1423, 1, 32, 295, 601, 716, 727, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 +...
where we have the following series identity:
A(x) = 1 + x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5  + x^6*(1+x^6)^6 + x^7*(1+x^7)^7 + x^8*(1+x^8)^8 + x^9*(1+x^9)^9 +...
A(x) = 1/(1-x) + x^2/(1-x^2)^2 + x^6/(1-x^3)^3 + x^12/(1-x^4)^4 + x^20/(1-x^5)^5 + x^30/(1-x^6)^6 + x^42/(1-x^7)^7 + x^56/(1-x^8)^8 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; Sum[x^n*(1 + x^n)^n, {n, 0, terms}] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n,t=1)=polcoeff(sum(m=0,n,x^m*(t+x^m +x*O(x^n))^m),n)}
    for(n=0,100,print1(a(n),", "))
    
  • PARI
    {a(n,t=1)=local(A=1+x); A=sum(k=0, sqrtint(n+1), x^(k*(k+1))/(1 - t*x^(k+1) +x*O(x^n))^(k+1) ); polcoeff(A, n)}
    for(n=0,100,print1(a(n),", ")) \\ Paul D. Hanna, Sep 13 2014
    
  • PARI
    {a(n) = if(n==0,1, sumdiv(n,d, binomial(n/d,d-1)) )}
    for(n=0,100,print1(a(n),", ")) \\ Paul D. Hanna, Apr 25 2018

Formula

G.f.: Sum_{n>=0} x^(n*(n+1)) / (1 - x^(n+1))^(n+1). - Paul D. Hanna, Sep 13 2014
a(n) = Sum_{d|n} binomial(n/d, d-1) for n>0 with a(0) = 1. - Paul D. Hanna, Apr 25 2018

A318636 Expansion of Sum_{n>=1} ( (1 + x^n)^n - 1 ).

Original entry on oeis.org

1, 2, 3, 5, 5, 9, 7, 14, 10, 20, 11, 31, 13, 35, 25, 45, 17, 74, 19, 70, 56, 77, 23, 161, 26, 104, 111, 154, 29, 261, 31, 222, 198, 170, 56, 536, 37, 209, 325, 496, 41, 623, 43, 605, 626, 299, 47, 1407, 50, 602, 731, 1092, 53, 1305, 517, 1443, 1026, 464, 59, 4002, 61, 527, 1429, 2381, 1352, 2596, 67, 3009, 1840, 2787, 71, 6719, 73, 740, 5378, 4655, 407, 5135, 79, 10118
Offset: 1

Views

Author

Paul D. Hanna, Sep 07 2018

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 3*x^3 + 5*x^4 + 5*x^5 + 9*x^6 + 7*x^7 + 14*x^8 + 10*x^9 + 20*x^10 + 11*x^11 + 31*x^12 + 13*x^13 + 35*x^14 + 25*x^15 + 45*x^16 + ...
such that
A(x) = x + (1 + x^2)^2 - 1 + (1 + x^3)^3 - 1 + (1 + x^4)^4 - 1 + (1 + x^5)^5 - 1 + (1 + x^6)^6 - 1 + (1 + x^7)^7-1 + ...
RELATED SERIES.
The g.f. A(x) equals following series at y = 1:
Sum_{n>=1} ((y + x^n)^n - y^n) = x + 2*y*x^2 + 3*y^2*x^3 + (4*y^3 + 1)*x^4 + 5*y^4*x^5 + (6*y^5 + 3*y)*x^6 + 7*y^6*x^7 + (8*y^7 + 6*y^2)*x^8 + (9*y^8 + 1)*x^9 + (10*y^9 + 10*y^3)*x^10 + 11*y^10*x^11 + (12*y^11 + 15*y^4 + 4*y)*x^12 + 13*y^12*x^13 + (14*y^13 + 21*y^5)*x^14 + (15*y^14 + 10*y^2)*x^15 + (16*y^15 + 28*y^6 + 1)*x^16 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = polcoeff( sum(m=1,n, (x^m + 1 +x*O(x^n))^m - 1), n)}
    for(n=1,100, print1(a(n),", "))

Formula

a(n) = Sum_{d|n} binomial(n/d,d). - Ridouane Oudra, May 02 2019
G.f.: Sum_{k >=1} x^(k^2)/(1-x^k)^(k+1). - Seiichi Manyama, Oct 30 2023

A261605 G.f.: Sum_{n=-oo..+oo} x^(n^2) / (1 - x^n)^n.

Original entry on oeis.org

1, 2, -1, 4, -1, 6, -6, 8, 2, 12, -15, 12, 8, 14, -28, 32, 22, 18, -55, 20, 34, 72, -66, 24, 44, 28, -91, 140, 62, 30, -205, 32, 209, 244, -153, 72, -98, 38, -190, 392, 443, 42, -518, 44, -1, 788, -276, 48, 506, 52, -451, 852, -196, 54, -1086, 728, 1636, 1180, -435, 60, -1691
Offset: 0

Views

Author

Paul D. Hanna, Aug 25 2015

Keywords

Examples

			G.f.: A(x) = 1 + 2*x - x^2 + 4*x^3 - x^4 + 6*x^5 - 6*x^6 + 8*x^7 + 2*x^8 + 12*x^9 - 15*x^10 + 12*x^11 + 8*x^12 + 14*x^13 - 28*x^14 + 32*x^15 + 22*x^16 +...
where A(x) = 1 + N(x) + P(x) such that
N(x) = (x-1) + (x^2-1)^2 + (x^3-1)^3 + (x^4-1)^4 + (x^5-1)^5 + (x^6-1)^6 +...
P(x) = x/(1-x) + x^4/(1-x^2)^2 + x^9/(1-x^3)^3 + x^16/(1-x^4)^4 + x^25/(1-x^5)^5 +...
explicitly,
N(x) = x - 2*x^2 + 3*x^3 - 3*x^4 + 5*x^5 - 9*x^6 + 7*x^7 - 2*x^8 + 10*x^9 - 20*x^10 + 11*x^11 - x^12 + 13*x^13 - 35*x^14 + 25*x^15 + 13*x^16 +...
P(x) = x + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + x^7 + 4*x^8 + 2*x^9 + 5*x^10 + x^11 + 9*x^12 + x^13 + 7*x^14 + 7*x^15 + 9*x^16 +...+ A143862(n)*x^n +...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq(add( (-1)^(n/d+d)*binomial(d, n/d) + binomial(n/d-1, d-1), d in divisors(n)), n = 1..60); # Peter Bala, Mar 03 2025
  • PARI
    {a(n) = polcoeff(sum(m=-n-2,n+2,x^(m^2)/(1-x^m +x*O(x^n))^m), n)}
    for(n=0,60,print1(a(n),", "))
    
  • PARI
    {a(n) = polcoeff(sum(m=-n-2,n+2,(x^m-1 +x*O(x^n))^m), n)}
    for(n=0,60,print1(a(n),", "))
    
  • PARI
    {a(n) = polcoeff(1/2 + sum(m=-n-2,n+2,x^(m^2)/(1+x^m +x*O(x^n))^(m+1)), n)}
    for(n=0,60,print1(a(n),", "))
    
  • PARI
    {a(n) = polcoeff(1/2 + sum(m=-n-2,n+2,x^m*(1+x^m +x*O(x^n))^(m-1)), n)}
    for(n=0,60,print1(a(n),", "))

Formula

G.f.: Sum_{n=-oo..+oo} (x^n - 1)^n.
G.f.: 1/2 + Sum_{n=-oo..+oo} x^(n^2) / (1 + x^n)^(n+1).
G.f.: 1/2 + Sum_{n=-oo..+oo} x^n * (1 + x^n)^(n-1).
From Peter Bala, Mar 03 2025: (Start)
For n >= 1, a(n) = Sum_{d divides n} (-1)^(n/d+d)*binomial(d, n/d) + binomial(n/d-1, d-1).
For odd prime p, a(p) = p + 1, a(2*p) = - p*(p + 1)/2, a(p^2) = p^2 + 3. (End)

A303506 G.f.: Sum_{n>=1} (-1)^(n-1) * x^(n^2)/(1 - x^n)^n.

Original entry on oeis.org

1, 1, 1, 0, 1, -1, 1, -2, 2, -3, 1, -1, 1, -5, 7, -7, 1, 3, 1, -12, 16, -9, 1, 1, 2, -11, 29, -32, 1, 28, 1, -49, 46, -15, 16, -18, 1, -17, 67, -67, 1, 53, 1, -140, 162, -21, 1, -103, 2, 103, 121, -244, 1, 55, 211, -305, 154, -27, 1, -17, 1, -29, 219, -486, 496, -73, 1, -592, 232, 766, 1, -931, 1, -35, 1278, -852, 211, -529, 1, 322, 327, -39, 1, -1654, 1821, -41, 379, -1492, 1, 750, 925, -1584
Offset: 1

Views

Author

Paul D. Hanna, Apr 25 2018

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + x^5 - x^6 + x^7 - 2*x^8 + 2*x^9 - 3*x^10 + x^11 - x^12 + x^13 - 5*x^14 + 7*x^15 - 7*x^16 + x^17 + 3*x^18 + ...
such that
A(x) = x/(1-x) - x^4/(1-x^2)^2 + x^9/(1-x^3)^3 - x^16/(1-x^4)^4 + x^25/(1-x^5)^5 - x^36/(1-x^6)^6 + x^49/(1-x^7)^7 - x^64/(1-x^8)^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = sumdiv(n,d, binomial(n/d-1, d-1) * (-1)^(d-1) )}
    for(n=1,100, print1(a(n),", "))

Formula

a(n) = Sum_{d|n} binomial(n/d-1, d-1) * (-1)^(d-1) for n>=1.

A303560 Decimal expansion of constant A = Sum_{n>=1} 1 / (2^n - 1)^n.

Original entry on oeis.org

1, 1, 1, 4, 0, 4, 6, 3, 5, 1, 0, 3, 8, 0, 0, 3, 0, 4, 9, 6, 1, 4, 9, 9, 4, 2, 3, 6, 2, 0, 0, 1, 7, 7, 2, 4, 7, 5, 6, 5, 1, 4, 3, 1, 6, 5, 5, 5, 8, 3, 8, 9, 0, 2, 3, 0, 6, 5, 1, 1, 1, 4, 5, 4, 0, 1, 4, 8, 1, 8, 6, 8, 5, 5, 4, 9, 2, 1, 6, 4, 9, 6, 1, 0, 5, 8, 0, 3, 4, 5, 4, 6, 7, 1, 5, 3, 0, 9, 8, 5, 3, 4, 7, 8, 7, 7, 2, 7, 0, 3, 7, 2, 3, 0, 1, 8, 4, 2, 1, 7
Offset: 1

Views

Author

Paul D. Hanna, Apr 26 2018

Keywords

Examples

			Constant A = 1.1140463510380030496149942362001772475651431655583890...
This constant equals the sum of the following infinite series.
(1) A = 1 + 1/3^2 + 1/7^3 + 1/15^4 + 1/31^5 + 1/63^6 + 1/127^7 + 1/255^8 + 1/511^9 + 1/1023^10 + 1/2047^11 + 1/4095^12 + 1/8191^13 + 1/16383^14 + ...
Also,
(2) A = 1/2 + 5/2^4 + 9^2/2^9 + 17^3/2^16 + 33^4/2^25 + 65^5/2^36 + 129^6/2^49 + 257^7/2^64 + 513^8/2^81 + 1025^9/2^100 + 2049^10/2^121 + 4097^11/2^144 + ...
Expressed in terms of powers of 1/2, we have
(3) A = 1/2 + 1/2^2 + 1/2^3 + 2/2^4 + 1/2^5 + 3/2^6 + 1/2^7 + 4/2^8 + 2/2^9 + 5/2^10 + 1/2^11 + 9/2^12 + 1/2^13 + 7/2^14 + 7/2^15 + 9/2^16 + 1/2^17 + 19/2^18 + 1/2^19 + 14/2^20 + 16/2^21 + 11/2^22 + ... + A143862(n)/2^n + ...
DECIMAL EXPANSION TO 1000 DIGITS:
A = 1.11404635103800304961499423620017724756514316555838\
90230651114540148186855492164961058034546715309853\
47877270372301842177485420929460338909110702521744\
10383049196253371844115566456211414378684927895066\
60974873819605352670009454376709247947228660654797\
93238935770616752469239881642090329202510251771440\
45431299113929370687739805515426044704234082381940\
40977172853717815297745712948744536180513363052564\
03854647492812806063479313722184475876462500578835\
52045304926771113275210795841642087115096877536105\
78958100347787242164699010158545554930990338272655\
43040184293715344496344121360156193744995971261933\
73889789233802551892919983961109429243561889220300\
14247648527081291849257683339708248465152426049641\
37604659963590944969427064766226893075229683791387\
71510378240823470806036647280652258639308495696013\
02313861338203801779994141266165775176960964298159\
94404826055321122142831544652111697011832111972164\
78072293762844331943953407090067036379926709332730\
54952123380671191947076262400344800454366565708630...
		

Crossrefs

Cf. A303561 (binary), A302765, A143862.

Formula

This constant may be defined by the following expressions.
(1) A = Sum_{n>=1} 1 / (2^n - 1)^n.
(2) A = Sum_{n>=1} (2^n + 1)^(n-1) / 2^(n^2).
(3) A = Sum_{n>=1} A143862(n)/2^n where A143862(n) = Sum_{d|n} binomial(n/d-1, d-1) for n>=1.

A338271 a(n) is the number of compositions of n, b_1 + ... + b_t = n such that sqrt(b_1 + sqrt(b_2 + ... + sqrt(b_t)...)) is an integer.

Original entry on oeis.org

1, 0, 0, 2, 0, 2, 0, 2, 2, 4, 2, 6, 2, 8, 4, 14, 6, 20, 8, 28, 14, 44, 20, 66, 30, 96, 46, 146, 70, 220, 102, 326, 154, 490, 232, 740, 346, 1102, 520, 1652, 782, 2484, 1166, 3716, 1750, 5568, 2628, 8358, 3936, 12518, 5900, 18760, 8848, 28138, 13256, 42170
Offset: 1

Views

Author

Peter Kagey, Oct 19 2020

Keywords

Comments

a(n) <= Sum_{k=1..floor(sqrt(n)/2)} A338286(floor((n-4*k^2)/2)) when n is even.
a(n) <= Sum_{k=1..floor((sqrt(n) - 1)/2)} A338286(floor((n-4*k^2-4*k-1)/2)) when n is odd and greater than 1.

Examples

			(Let s(k) = sqrt(k) for brevity.)
For n = 14, the a(14) = 8 valid compositions are:
14 = 2+2+2+2+2+3+1 and 2 = s(2+s(2+s(2+s(2+s(2+s(3+s(1)))))))
14 = 1+7+2+3+1     and 2 = s(1+s(7+s(2+s(3+s(1)))))
14 = 2+1+7+3+1     and 2 = s(2+s(1+s(7+s(3+s(1)))))
14 = 2+2+1+8+1     and 2 = s(2+s(2+s(1+s(8+s(1)))))
14 = 2+2+2+2+2+4   and 2 = s(2+s(2+s(2+s(2+s(2+s(4))))))
14 = 1+7+2+4       and 2 = s(1+s(7+s(2+s(4))))
14 = 2+1+7+4       and 2 = s(2+s(1+s(7+s(4))))
14 = 2+2+1+9       and 2 = s(2+s(2+s(1+s(9))))
		

Crossrefs

Formula

a(n) = Sum_{i=k..A000196(n)} A338268(n,k).

A376018 a(n) = Sum_{d|n} d^d * binomial(n/d-1,d-1).

Original entry on oeis.org

1, 1, 1, 5, 1, 9, 1, 13, 28, 17, 1, 102, 1, 25, 163, 285, 1, 303, 1, 1061, 406, 41, 1, 3172, 3126, 49, 757, 5173, 1, 16654, 1, 9021, 1216, 65, 46876, 62546, 1, 73, 1783, 130956, 1, 282123, 1, 30805, 221208, 89, 1, 1024944, 823544, 393847, 3241, 56421, 1, 2616513
Offset: 1

Views

Author

Seiichi Manyama, Sep 06 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, d^d*binomial(n/d-1, d-1));
    
  • PARI
    my(N=60, x='x+O('x^N)); Vec(sum(k=1, N, (k*x^k/(1-x^k))^k))
    
  • Python
    from math import comb
    from itertools import takewhile
    from sympy import divisors
    def A376018(n): return sum(d**d*comb(n//d-1,d-1) for d in takewhile(lambda d:d**2<=n,divisors(n))) # Chai Wah Wu, Sep 06 2024

Formula

G.f.: Sum_{k>=1} ( k*x^k / (1 - x^k) )^k.
If p is prime, a(p) = 1.

A299042 G.f.: Sum_{n>=0} x^(n^2) * C(x^n)^n, where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 1, 2, 6, 14, 44, 132, 434, 1431, 4876, 16796, 58831, 208012, 743032, 2674449, 9695275, 35357670, 129646248, 477638700, 1767268056, 6564120510, 24466283816, 91482563640, 343059672747, 1289904147325, 4861946609464, 18367353073153, 69533551658952, 263747951750360, 1002242219329245, 3814986502092304, 14544636048921919, 55534064877060132, 212336130447600780
Offset: 0

Views

Author

Paul D. Hanna, Feb 16 2018

Keywords

Comments

Compare to: Sum{n>=0} Series_Reversion( x/(1 + x^n)^(1/n) )^(n^2) = Sum_{n>=0} x^(n^2)/(1 - x^n)^n, the g.f. of A143862.

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 6*x^4 + 14*x^5 + 44*x^6 + 132*x^7 + 434*x^8 + 1431*x^9 + 4876*x^10 + 16796*x^11 + 58831*x^12 + ...
such that
A(x) = 1 + (1 - sqrt(1 - 4*x))/2 + (1 - sqrt(1 - 4*x^2))^2/2^2 + (1 - sqrt(1 - 4*x^3))^3/2^3 + (1 - sqrt(1 - 4*x^4))^4/2^4 + (1 - sqrt(1 - 4*x^5))^5/2^5 + (1 - sqrt(1 - 4*x^6))^6/2^6 + ...
The related series x^(n^2) * C(x^n)^n = (1 - sqrt(1 - 4*x^n))^n/2^n begin:
n=1: x + x^2 + 2*x^3 + 5*x^4 + 14*x^5 + 42*x^6 + ...;
n=2: x^4 + 2*x^6 + 5*x^8 + 14*x^10 + 42*x^12 + ...;
n=3: x^9 + 3*x^12 + 9*x^15 + 28*x^18 + 90*x^21 + ...;
n=4: x^16 + 4*x^20 + 14*x^24 + 48*x^28 + 165*x^32 + ...;
n=5: x^25 + 5*x^30 + 20*x^35 + 75*x^40 + 275*x^45 + ...;
n=6: x^36 + 6*x^42 + 27*x^48 + 110*x^54 + 429*x^60 + ...;
...
SPECIFIC VALUES.
A(1/4) = Sum_{n>=0} (2^(n-1) - sqrt(4^(n-1) - 1))^n / 2^(n^2) = 1.504491300666... = 1 + 1/2 + (2 - sqrt(3))^2/2^4 + (4 - sqrt(15))^3/2^9 + (8 - sqrt(63))^4/2^16 + (16 - sqrt(255))^5/2^25 + (32 - sqrt(1023))^6/2^36 + (64 - sqrt(4095))^7/2^49 + ...
A(-1/4) = Sum_{n>=0} (2^(n-1) - sqrt(4^(n-1) + 1))^n / 2^(n^2) = 0.79637258079... = 1 + (1 - sqrt(2))/2 + (2 - sqrt(5))^2/2^4 + (4 - sqrt(17))^3/2^9 + (8 - sqrt(65))^4/2^16 + (16 - sqrt(257))^5/2^25 + (32 - sqrt(1025))^6/2^36 + ...
		

Crossrefs

Cf. A000108.

Programs

  • PARI
    {a(n) = my(A); A = sum(m=0,sqrtint(n+1), (1 - sqrt(1 - 4*x^m +x*O(x^n) ))^m / 2^m); polcoeff(A,n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: Sum{n>=0} (1 - sqrt(1 - 4*x^n))^n / 2^n.
G.f.: Sum{n>=0} Series_Reversion( x*(1 - x^n)^(1/n) )^(n^2).
Showing 1-10 of 11 results. Next