cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A260147 G.f. A(x) = Sum_{n=-oo..+oo} x^n * (1 + x^n)^(2*n).

Original entry on oeis.org

1, 2, 1, 5, 1, 6, 8, 8, 1, 25, 12, 12, 29, 14, 36, 77, 1, 18, 151, 20, 71, 135, 166, 24, 121, 236, 287, 307, 30, 30, 1141, 32, 1, 727, 681, 1247, 314, 38, 970, 1652, 1821, 42, 2633, 44, 331, 6590, 1772, 48, 497, 3053, 7146, 6801, 1717, 54, 4051, 7427, 8009, 12389, 3655, 60, 17842, 62, 4496, 42841, 1, 15731, 6470, 68, 19449, 34754, 65781
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2015

Keywords

Comments

Compare to the curious identities:
(1) Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
(2) Sum_{n=-oo..+oo} (-x)^n * (1 + x^n)^n = 0.
Name changed for clarity by Paul D. Hanna, Dec 10 2024; prior name was "G.f.: (1/2) * Sum_{n=-oo..+oo} x^n * (1 + x^n)^n, an even function."

Examples

			G.f.: A(x) = 1 + 2*x^2 + x^4 + 5*x^6 + x^8 + 6*x^10 + 8*x^12 + 8*x^14 + x^16 + 25*x^18 + 12*x^20 + ...
where 2*A(x) = 1 + P(x) + N(x) with
P(x) = x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5 + ...
N(x) = 1/(1+x) + x^2/(1+x^2)^2 + x^6/(1+x^3)^3 + x^12/(1+x^4)^4 + x^20/(1+x^5)^5 + ...
Explicitly,
P(x) = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 + 4*x^9 + 6*x^10 + x^11 + 14*x^12 + x^13 + 8*x^14 + 11*x^15 + 13*x^16 + x^17 + 25*x^18 + x^19 + 22*x^20 + 22*x^21 + 12*x^22 + x^23 + 61*x^24 + 6*x^25 +...+ A217668(n)*x^n + ...
N(x) = 1 - x + 2*x^2 - x^3 - x^4 - x^5 + 5*x^6 - x^7 - 3*x^8 - 4*x^9 + 6*x^10 - x^11 + 2*x^12 - x^13 + 8*x^14 - 11*x^15 - 11*x^16 - x^17 + 25*x^18 - x^19 + 2*x^20 - 22*x^21 + 12*x^22 - x^23 - 3*x^24 - 6*x^25 +...+ A260148(n)*x^n + ...
From _Paul D. Hanna_, Dec 10 2024: (Start)
SPECIFIC VALUES.
A(z) = 0 at z = -0.404783857785183643579648014798209689698619095608142590080356...
  where 0 = Sum_{n=-oo..+oo} z^n * (1 + z^n)^(2*n).
A(t) = 8 at t = 0.66184860446935243758952792459096102121713616089603...
A(t) = 7 at t = 0.64280265347584821638335226655422639958638446962646...
A(t) = 6 at t = 0.61846293982236470622283664293769398297407552626520...
A(t) = 5 at t = 0.58591538561726828976301449562779896617926938759041...
A(t) = 4 at t = 0.53948212974289878102531393938569583066950526874204...
A(t) = 3 at t = 0.46633361832235508894561538442655261465230172977527...
A(t) = 2 at t = 0.33014122063168294490173944063355594394361494532642...
  where 2 = Sum_{n=-oo..+oo} t^n * (1 + t^n)^(2*n).
A(t) = -1 at t = -0.57221202613754835881500708971837082259712665852148...
A(t) = -2 at t = -0.66124771863833308133360587362156745037996654826889...
A(t) = -3 at t = -0.72841228559829175547612598129696947453305714538354...
A(t) = -4 at t = -0.90975449896027994776675798799643226140294233213401...
A(4/5) = 39.597156112579883800797829785472315940190856875500...
A(3/4) = 18.522637966827153559321082877260756270457362912092...
A(2/3) = 8.2917909754417331599016245586686519315443444070756...
A(3/5) = 5.3942577326786364433206097043093210828422082884565...
A(1/2) = 3.3971121875472777749836900920631175982646917998641...
  where A(1/2) = Sum_{n=-oo..+oo} (2^n + 1)^(2*n) / 2^(2*n^2+n).
A(2/5) = 2.4226617866265771206729430879848898772232404418272...
A(1/3) = 2.0164022766484546805373278337731916678136050742206...
  where A(1/3) = Sum_{n=-oo..+oo} (3^n + 1)^(2*n) / 3^(2*n^2+n).
A(1/4) = 1.6529591092151291503041860933179009814428123139546...
  where A(1/4) = Sum_{n=-oo..+oo} (4^n + 1)^(2*n) / 4^(2*n^2+n).
A(1/5) = 1.4841513733060571811336245213703004776194631749017...
  where A(1/5) = Sum_{n=-oo..+oo} (5^n + 1)^(2*n) / 5^(2*n^2+n).
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq(add(binomial(2*n/d, d-1) + (-1)^(n/d+1) * binomial(n/d, 2*d-1), d in divisors(n)), n = 1..70); # Peter Bala, Mar 02 2025
  • Mathematica
    terms = 100; max = 2 terms; 1/2 Sum[x^n*(1 + x^n)^n, {n, -max, max}] + O[x]^max // CoefficientList[#, x^2]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n) = my(A=1); A = sum(k=-2*n-2, 2*n+2, x^k*(1+x^k)^k/2 + O(x^(2*n+2)) ); polcoef(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-2*n-2, 2*n+2, x^(k^2-k) / (1 + x^k)^k /2  + O(x^(2*n+2)) ); polcoef(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-sqrtint(n)-1, n+1, x^k*((1+x^k)^(2*k) + (1-x^k)^(2*k))/2 + O(x^(n+1)) ); polcoef(A, n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-n-1, n+1, x^k*(1+x^k)^(2*k) + O(x^(n+1)) ); polcoef(A, n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-n-1, n+1, x^(2*k^2-k)/(1-x^k + O(x^(n+1)))^(2*k)  ); polcoef(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

The g.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (1 + x^n)^n.
(2) A(x^2) = (1/2) * Sum_{n=-oo..+oo} (-x)^n * (1 - x^n)^n.
(3) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + x^n)^n.
(4) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 - x^n)^n.
(5) A(x) = Sum_{n=-oo..+oo} x^n * (1 + x^n)^(2*n).
(6) A(x) = Sum_{n=-oo..+oo} x^n * (1 - x^n)^(2*n).
(7) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 - x^n)^(2*n).
(8) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + x^n)^(2*n).
a(2^n) = 1 for n > 0 (conjecture).
a(p) = p+1 for primes p > 3 (conjecture).
From Peter Bala, Jan 23 2021: (Start)
The following are conjectural:
A(x^2) = Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1) )^(2*n+1).
Equivalently: A(x^2) = Sum_{n = -oo..+oo} x^(4*n^2 + 2*n)/(1 + x^(2*n+1))^(2*n+1).
a(2*n+1) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1))^(4*n+2)
More generally, for k = 1,2,3,..., a((2^k)*(2*n + 1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1))^(2^(k+1)*(2*n+1)).
a(2*n+1) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 + x^n)^(2*n) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 - x^n)^(2*n).
More generally, for k = 1,2,3,...,
a((2^k)*(2*n+1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 + x^n)^(2^(k+1)*n) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 - x^n)^(2^(k+1)*n).
a(4*n+2) = [x^(4*n+2)] Sum_{n = -oo..+oo} (-1)^n*x^n*(1 + x^n)^(2*n) = [x^(4*n+2)] Sum_{n = -oo..+oo} (-1)^n*x^n*(1 - x^n)^(2*n).
a(n) = [x^(2*n)] Sum_{n = -oo..+oo} (-1)^n*x^(2*n+1)*(1 + (-1)^n* x^(2*n+1) )^(2*n+1).
For k = 1,2,3,...,
a((2^k)*(2*n+1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + (-1)^n* x^(2*n+1) )^(2^(k+1)*(2*n+1)).
(End)
From Peter Bala, Mar 02 2025: (Start)
a(n) = Sum_{d divides n} (binomial(2*n/d, d-1) + (-1)^(n/d+1) * binomial(n/d, 2*d-1)) for n >= 1.
Hence, a(p) = p + 1 for primes p > 3 and a(2^n) = 1 for n > 0 as conjectured above. (End)

A217670 G.f.: Sum_{n>=0} x^n/(1 + x^n)^n.

Original entry on oeis.org

1, 1, 0, 2, -2, 2, 0, 2, -8, 8, 0, 2, -12, 2, 0, 32, -36, 2, 0, 2, -20, 58, 0, 2, -136, 72, 0, 92, -28, 2, 0, 2, -272, 134, 0, 422, -288, 2, 0, 184, -480, 2, 0, 2, -44, 1232, 0, 2, -2360, 926, 0, 308, -52, 2, 0, 2004, -1176, 382, 0, 2, -4064, 2, 0, 6470, -5128, 3642
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^3 - 2*x^4 + 2*x^5 + 2*x^7 - 8*x^8 + 8*x^9 +...
where
A(x) = 1 + x/(1+x) + x^2/(1+x^2)^2 + x^3/(1+x^3)^3 + x^4/(1+x^4)^4 + x^5/(1+x^5)^5 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; Sum[x^n/(1 + x^n)^n, {n, 0, terms}] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^m/(1+x^m +x*O(x^n))^m), n)}
    for(n=0, 100, print1(a(n), ", "))
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, (-1)^(d-1)*binomial(d+n/d-2, d-1))); \\ Seiichi Manyama, Apr 23 2021

Formula

a(4*n+2) = 0 for n>=0.
From Seiichi Manyama, Apr 23 2021: (Start)
a(n) = Sum_{d|n} (-1)^(d-1) * binomial(d+n/d-2, d-1) for n > 0.
If p is prime, a(p) = 1 + (-1)^(p-1). (End)

A217669 G.f.: Sum_{n>=0} (x + x^n)^n.

Original entry on oeis.org

1, 2, 1, 3, 2, 4, 1, 8, 1, 7, 7, 7, 1, 22, 1, 9, 17, 20, 1, 32, 1, 37, 29, 13, 1, 86, 16, 15, 46, 72, 1, 113, 1, 102, 67, 19, 72, 239, 1, 21, 92, 313, 1, 191, 1, 244, 331, 25, 1, 575, 29, 357, 154, 392, 1, 452, 496, 577, 191, 31, 1, 1979, 1, 33, 443, 750, 1002
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2012

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * y^n * (F + G^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * y^n * G^(n^2) / (1 - y*F*G^n)^(n+k),
for any fixed integer k; here, k = 1 and y = 1, F = x, G = x.

Examples

			G.f.: A(x) = 1 + 2*x + x^2 + 3*x^3 + 2*x^4 + 4*x^5 + x^6 + 8*x^7 + x^8 +...
where
A(x) = 1 + (x + x) + (x + x^2)^2 + (x + x^3)^3 + (x + x^4)^4 + (x + x^5)^5 +...
Also
A(x) = 1/(1-x) + x/(1 - x^2)^2 + x^4/(1 - x^3)^3 + x^9/(1 - x^4)^4 + x^16/(1 - x^5)^5 + x^25/(1 - x^6)^6 + x^36/(1 - x^7)^7 + x^49/(1 - x^8)^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,(x+x^m +x*O(x^n))^m),n)}
    for(n=0,100,print1(a(n),", "))
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+1)), n)}
    for(n=0, 100, print1(a(n), ", "))

Formula

Generating functions.
(1) Sum_{n>=0} (x + x^n)^n.
(2) Sum_{n>=0} x^(n^2) / (1 - x^(n+1))^(n+1). - Paul D. Hanna, Jun 02 2019

A260148 Expansion of Sum_{n>=0} x^(n^2-n) / (1 + x^n)^n.

Original entry on oeis.org

1, -1, 2, -1, -1, -1, 5, -1, -3, -4, 6, -1, 2, -1, 8, -11, -11, -1, 25, -1, 2, -22, 12, -1, -3, -6, 14, -37, 22, -1, 77, -1, -71, -56, 18, -36, 127, -1, 20, -79, -69, -1, 135, -1, 144, -232, 24, -1, -179, -8, 236, -137, 261, -1, 307, -331, -362, -172, 30, -1, 859, -1, 32, -295, -599, -716, 727, -1, 647, -254, 1247
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2015

Keywords

Examples

			A(x) = 1 - x + 2*x^2 - x^3 - x^4 - x^5 + 5*x^6 - x^7 - 3*x^8 - 4*x^9 + 6*x^10 +...
where
A(x) = 1/(1+x) + x^2/(1+x^2)^2 + x^6/(1+x^3)^3 + x^12/(1+x^4)^4 + x^20/(1+x^5)^5 + ...
Also,
A(x) = 1 + x*(x-1) + x^2*(x^2-1)^2 + x^3*(x^3-1)^3 + x^4*(x^4-1)^4 + x^5*(x^5-1)^5 + ...
		

Crossrefs

Programs

  • PARI
    a(n) = local(A=1); A = sum(k=1, sqrtint(n)+1, x^(k^2-k) / (1 + x^k +x*O(x^n) )^k ); polcoeff(A, n);
    for(n=0, 70, print1(a(n), ", "))
    
  • PARI
    a(n) = local(A=0); A = sum(k=1,n+1, x^(-k)/(1 + x^(-k) +x*O(x^n) )^k ); polcoeff(A, n);
    for(n=0, 70, print1(a(n), ", "))
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, (-1)^(d-n/d+1)*binomial(d, n/d-1))); \\ Seiichi Manyama, Feb 20 2023

Formula

G.f.: Sum_{n>=1} x^(-n) / (1 + x^(-n))^n.
G.f.: Sum_{n>=0} x^n * (x^n - 1)^n. - Paul D. Hanna, May 30 2018
a(p) = -1 for odd primes p.
a(n) = Sum_{d|n} (-1)^(d-n/d+1) * binomial(d,n/d-1) for n > 0. - Seiichi Manyama, Feb 20 2023

A360712 Expansion of Sum_{k>0} (k * x * (1 + k*x^k))^k.

Original entry on oeis.org

1, 5, 27, 272, 3125, 46915, 823543, 16781312, 387421218, 10000078125, 285311670611, 8916102153177, 302875106592253, 11112006865911623, 437893890381640625, 18446744074783358976, 827240261886336764177, 39346408075327943829273
Offset: 1

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, #^(#+n/#-1) * Binomial[#, n/# - 1] &]; Array[a, 20] (* Amiram Eldar, Aug 09 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, (k*x*(1+k*x^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, d^(d+n/d-1)*binomial(d, n/d-1));

Formula

a(n) = Sum_{d|n} d^(d+n/d-1) * binomial(d,n/d-1).
If p is an odd prime, a(p) = p^p.

A260180 G.f.: Sum_{n>=0} x^n * (1 - x^n)^n.

Original entry on oeis.org

1, 1, 0, 1, -1, 1, -1, 1, -3, 4, -4, 1, 0, 1, -6, 11, -11, 1, 7, 1, -18, 22, -10, 1, -3, 6, -12, 37, -48, 1, 45, 1, -71, 56, -16, 36, -41, 1, -18, 79, -69, 1, 51, 1, -186, 232, -22, 1, -179, 8, 186, 137, -311, 1, 1, 331, -364, 172, -28, 1, -51, 1, -30, 295, -599, 716, -263, 1, -713, 254, 1177, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2015

Keywords

Comments

Compare to the curious identity: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.

Examples

			G.f.: A(x) = 1 + x + x^3 - x^4 + x^5 - x^6 + x^7 - 3*x^8 + 4*x^9 - 4*x^10 +...
where
A(x) = 1 + x*(1-x) + x^2*(1-x^2)^2 + x^3*(1-x^3)^3 + x^4*(1-x^4)^4 + x^5*(1-x^5)^5 +...
Also,
A(x) = 1/(1-x) - x^2/(1-x^2)^2 + x^6/(1-x^3)^3 - x^12/(1-x^4)^4 + x^20/(1-x^5)^5 +...
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq(add((-1)^(d-1)*binomial(n/d, d-1), d in divisors(n)), n = 1..70); # Peter Bala, Mar 02 2025
  • Mathematica
    terms = 100; 1 + Sum[x^n*(1 - x^n)^n, {n, 1, terms}] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n) = local(A=1); A = sum(k=0, n+1, x^k*(1-x^k)^k + O(x^(n+2))); polcoeff(A, n)}
    for(n=0, 80, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1); A = sum(k=1, n+1, -1/x^k / (1 - 1/x^k + O(x^(n+2)) )^k + O(x^(n+2))); polcoeff(A, n)}
    for(n=0, 80, print1(a(n), ", "))
    
  • PARI
    {a(n) = local(A=1); A = sum(k=1, sqrtint(n)+1, (-1)^(k-1) * x^(k^2-k)/(1-x^k)^k + O(x^(n+2))); polcoeff(A, n)}
    for(n=0, 80, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=1} (-1)^(n-1) * x^(n^2-n) / (1 - x^n)^n.
G.f.: Sum_{n>=1} - x^(-n) / (1 - x^(-n))^n.
From Peter Bala, Mar 02 2025: (Start)
For n >= 1, a(n) = Sum_{d divides n} (-1)^(d-1) * binomial(n/d, d-1).
For prime p > 3, a(p) = 1, a(2*p) = 1 - p and a(p^2) = p + 1. (End)

A326002 G.f.: Sum_{n>=0} (n+1) * x^n * (1 + x^n)^n.

Original entry on oeis.org

1, 2, 5, 4, 11, 6, 22, 8, 29, 22, 41, 12, 89, 14, 71, 76, 109, 18, 214, 20, 196, 190, 155, 24, 573, 56, 209, 388, 519, 30, 877, 32, 809, 694, 341, 316, 2119, 38, 419, 1132, 2411, 42, 2045, 44, 2531, 2986, 599, 48, 6053, 106, 3011, 2500, 4759, 54, 4978, 4016, 6589, 3478, 929, 60, 21468, 62, 1055, 5524, 10713, 10076, 12046, 68, 13499, 6142, 18656, 72, 34474, 74, 1481, 29716, 20939, 5622, 28432, 80, 57921, 10000, 1805, 84, 84155, 42926, 1979, 12268, 41449, 90, 122339, 24116, 44759, 14974, 2351, 77616, 153969
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - p*q^n*r)^(n+k),
for some fixed integer k; here, k = 2 and p = 1, q = x, r = x.

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 4*x^3 + 11*x^4 + 6*x^5 + 22*x^6 + 8*x^7 + 29*x^8 + 22*x^9 + 41*x^10 + 12*x^11 + 89*x^12 + 14*x^13 + 71*x^14 + 76*x^15 + 109*x^16 + 18*x^17 + 214*x^18 + 20*x^19 + 196*x^20 + ...
where we have the following series identity:
A(x) = 1 + 2*x*(1+x) + 3*x^2*(1+x^2)^2 + 4*x^3*(1+x^3)^3 + 5*x^4*(1+x^4)^4 + 6*x^5*(1+x^5)^5  + 7*x^6*(1+x^6)^6 + 8*x^7*(1+x^7)^7 + 9*x^8*(1+x^8)^8 + 10*x^9*(1+x^9)^9 + ...
is equal to
A(x) = 1/(1-x)^2 + 2*x^2/(1-x^2)^3 + 3*x^6/(1-x^3)^4 + 4*x^12/(1-x^4)^5 + 5*x^20/(1-x^5)^6 + 6*x^30/(1-x^6)^7 + 7*x^42/(1-x^7)^8 + 8*x^56/(1-x^8)^9 + ...
		

Crossrefs

Cf. A217668 (k=1), A326003 (k=3), A326004 (k=4), A326005 (k=5).

Programs

  • Maple
    N:= 100: # for a(0)..a(N)
    S:= series(add((n+1)*x^n*(1+x^n)^n,n=0..N),x,N+1):
    seq(coeff(S,x,n),n=0..N); # Robert Israel, Jun 03 2019
  • PARI
    {a(n) = my(A = sum(m=0,n, (m+1) * x^m * (1 + x^m +x*O(x^n))^m)); polcoeff(A,n)}
    for(n=0,120,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = sum(m=0,n, (m+1) * x^m * x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+2))); polcoeff(A,n)}
    for(n=0,120,print1(a(n),", "))

Formula

Generating functions.
(1) Sum_{n>=0} (n+1) * x^n * (1 + x^n)^n.
(2) Sum_{n>=0} (n+1) * x^(n*(n+1)) / (1 - x^(n+1))^(n+2).

A326003 G.f.: Sum_{n>=0} (n+1)*(n+2)/2 * x^n * (1 + x^n)^n.

Original entry on oeis.org

1, 3, 9, 10, 27, 21, 64, 36, 105, 85, 171, 78, 359, 105, 372, 346, 573, 171, 1105, 210, 1116, 1009, 1134, 300, 3237, 456, 1743, 2386, 3375, 465, 5947, 528, 5529, 4885, 3537, 1926, 14917, 741, 4770, 9010, 16551, 903, 17963, 990, 19977, 22291, 8028, 1176, 49925, 1527, 23961, 24634, 41289, 1485, 48502, 27336, 58809, 37621, 15255, 1830, 184218, 1953, 18384, 59830, 106137, 77286, 121705, 2346, 140115, 78385, 159846, 2628, 346846, 2775, 30267, 293866
Offset: 0

Views

Author

Paul D. Hanna, Jun 01 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - p*q^n*r)^(n+k),
for any fixed integer k; here, k = 3 and p = 1, q = x, r = x.

Examples

			G.f.: A(x) = 1 + 3*x + 9*x^2 + 10*x^3 + 27*x^4 + 21*x^5 + 64*x^6 + 36*x^7 + 105*x^8 + 85*x^9 + 171*x^10 + 78*x^11 + 359*x^12 + 105*x^13 + 372*x^14 + 346*x^15 + 573*x^16 + 171*x^17 + 1105*x^18 + 210*x^19 + 1116*x^20 + ...
where we have the following series identity:
A(x) = 1 + 3*x*(1+x) + 6*x^2*(1+x^2)^2 + 10*x^3*(1+x^3)^3 + 15*x^4*(1+x^4)^4 + 21*x^5*(1+x^5)^5  + 28*x^6*(1+x^6)^6 + 36*x^7*(1+x^7)^7 + 45*x^8*(1+x^8)^8 + 55*x^9*(1+x^9)^9 +...
is equal to
A(x) = 1/(1-x)^3 + 3*x^2/(1-x^2)^4 + 6*x^6/(1-x^3)^5 + 10*x^12/(1-x^4)^6 + 15*x^20/(1-x^5)^7 + 21*x^30/(1-x^6)^8 + 28*x^42/(1-x^7)^9 + 36*x^56/(1-x^8)^10 +...
		

Crossrefs

Cf. A217668 (k=1), A326002 (k=2), A326004 (k=4), A326005 (k=5).

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, (m+1)*(m+2)/2 * x^m * (1 + x^m +x*O(x^n))^m)); polcoeff(A,n)}
    for(n=0,120,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A = sum(m=0,n, (m+1)*(m+2)/2 * x^m * x^(m^2) / (1 - x^(m+1) +x*O(x^n))^(m+3))); polcoeff(A,n)}
    for(n=0,120,print1(a(n),", "))

Formula

Generating functions.
(1) Sum_{n>=0} (n+1)*(n+2)/2 * x^n * (1 + x^n)^n.
(2) Sum_{n>=0} (n+1)*(n+2)/2 * x^(n*(n+1)) / (1 - x^(n+1))^(n+3).

A217667 G.f.: Sum_{n>=0} (x + x^(2*n))^n.

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 1, 5, 1, 1, 5, 1, 4, 6, 1, 1, 7, 8, 1, 8, 1, 1, 19, 1, 5, 10, 1, 16, 11, 1, 1, 23, 22, 1, 13, 1, 1, 42, 21, 1, 20, 1, 37, 16, 1, 36, 17, 46, 1, 34, 1, 1, 130, 1, 1, 20, 1, 67, 56, 85, 7, 22, 79, 1, 23, 1, 121, 185, 1, 1, 25, 23, 106, 191, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2012

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * y^n * (F + G^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * y^n * G^(n^2) / (1 - y*F*G^n)^(n+k),
for any fixed integer k; here, k = 1 and y = 1, F = x, G = x^2.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + x^3 + x^4 + 3*x^5 + x^6 + x^7 + 5*x^8 + x^9 +...
where
A(x) = 1 + (x + x^2) + (x + x^4)^2 + (x + x^6)^3 + (x + x^8)^4 + (x + x^10)^5 +...
Also
A(x) = 1/(1-x) + x/(1 - x^3)^2 + x^4/(1 - x^5)^3 + x^9/(1 - x^7)^4 + x^16/(1 - x^9)^5 + x^25/(1 - x^11)^6 + x^36/(1 - x^13)^7 + x^49/(1 - x^15)^8 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; Sum[(x + x^(2*n))^n, {n, 0, terms}] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(x+x^(2*m) +x*O(x^n))^m),n)}
    for(n=0,100,print1(a(n),", "))

Formula

Generating functions.
(1) Sum_{n>=0} (x + x^(2*n))^n.
(2) Sum_{n>=0} x^(n^2) / (1 - x^(2*n+1))^(n+1). - Paul D. Hanna, Jun 02 2019

A303506 G.f.: Sum_{n>=1} (-1)^(n-1) * x^(n^2)/(1 - x^n)^n.

Original entry on oeis.org

1, 1, 1, 0, 1, -1, 1, -2, 2, -3, 1, -1, 1, -5, 7, -7, 1, 3, 1, -12, 16, -9, 1, 1, 2, -11, 29, -32, 1, 28, 1, -49, 46, -15, 16, -18, 1, -17, 67, -67, 1, 53, 1, -140, 162, -21, 1, -103, 2, 103, 121, -244, 1, 55, 211, -305, 154, -27, 1, -17, 1, -29, 219, -486, 496, -73, 1, -592, 232, 766, 1, -931, 1, -35, 1278, -852, 211, -529, 1, 322, 327, -39, 1, -1654, 1821, -41, 379, -1492, 1, 750, 925, -1584
Offset: 1

Views

Author

Paul D. Hanna, Apr 25 2018

Keywords

Examples

			G.f.: A(x) = x + x^2 + x^3 + x^5 - x^6 + x^7 - 2*x^8 + 2*x^9 - 3*x^10 + x^11 - x^12 + x^13 - 5*x^14 + 7*x^15 - 7*x^16 + x^17 + 3*x^18 + ...
such that
A(x) = x/(1-x) - x^4/(1-x^2)^2 + x^9/(1-x^3)^3 - x^16/(1-x^4)^4 + x^25/(1-x^5)^5 - x^36/(1-x^6)^6 + x^49/(1-x^7)^7 - x^64/(1-x^8)^8 +...
		

Crossrefs

Programs

  • PARI
    {a(n) = sumdiv(n,d, binomial(n/d-1, d-1) * (-1)^(d-1) )}
    for(n=1,100, print1(a(n),", "))

Formula

a(n) = Sum_{d|n} binomial(n/d-1, d-1) * (-1)^(d-1) for n>=1.
Showing 1-10 of 17 results. Next