cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A260147 G.f. A(x) = Sum_{n=-oo..+oo} x^n * (1 + x^n)^(2*n).

Original entry on oeis.org

1, 2, 1, 5, 1, 6, 8, 8, 1, 25, 12, 12, 29, 14, 36, 77, 1, 18, 151, 20, 71, 135, 166, 24, 121, 236, 287, 307, 30, 30, 1141, 32, 1, 727, 681, 1247, 314, 38, 970, 1652, 1821, 42, 2633, 44, 331, 6590, 1772, 48, 497, 3053, 7146, 6801, 1717, 54, 4051, 7427, 8009, 12389, 3655, 60, 17842, 62, 4496, 42841, 1, 15731, 6470, 68, 19449, 34754, 65781
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2015

Keywords

Comments

Compare to the curious identities:
(1) Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
(2) Sum_{n=-oo..+oo} (-x)^n * (1 + x^n)^n = 0.
Name changed for clarity by Paul D. Hanna, Dec 10 2024; prior name was "G.f.: (1/2) * Sum_{n=-oo..+oo} x^n * (1 + x^n)^n, an even function."

Examples

			G.f.: A(x) = 1 + 2*x^2 + x^4 + 5*x^6 + x^8 + 6*x^10 + 8*x^12 + 8*x^14 + x^16 + 25*x^18 + 12*x^20 + ...
where 2*A(x) = 1 + P(x) + N(x) with
P(x) = x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5 + ...
N(x) = 1/(1+x) + x^2/(1+x^2)^2 + x^6/(1+x^3)^3 + x^12/(1+x^4)^4 + x^20/(1+x^5)^5 + ...
Explicitly,
P(x) = x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 + 4*x^9 + 6*x^10 + x^11 + 14*x^12 + x^13 + 8*x^14 + 11*x^15 + 13*x^16 + x^17 + 25*x^18 + x^19 + 22*x^20 + 22*x^21 + 12*x^22 + x^23 + 61*x^24 + 6*x^25 +...+ A217668(n)*x^n + ...
N(x) = 1 - x + 2*x^2 - x^3 - x^4 - x^5 + 5*x^6 - x^7 - 3*x^8 - 4*x^9 + 6*x^10 - x^11 + 2*x^12 - x^13 + 8*x^14 - 11*x^15 - 11*x^16 - x^17 + 25*x^18 - x^19 + 2*x^20 - 22*x^21 + 12*x^22 - x^23 - 3*x^24 - 6*x^25 +...+ A260148(n)*x^n + ...
From _Paul D. Hanna_, Dec 10 2024: (Start)
SPECIFIC VALUES.
A(z) = 0 at z = -0.404783857785183643579648014798209689698619095608142590080356...
  where 0 = Sum_{n=-oo..+oo} z^n * (1 + z^n)^(2*n).
A(t) = 8 at t = 0.66184860446935243758952792459096102121713616089603...
A(t) = 7 at t = 0.64280265347584821638335226655422639958638446962646...
A(t) = 6 at t = 0.61846293982236470622283664293769398297407552626520...
A(t) = 5 at t = 0.58591538561726828976301449562779896617926938759041...
A(t) = 4 at t = 0.53948212974289878102531393938569583066950526874204...
A(t) = 3 at t = 0.46633361832235508894561538442655261465230172977527...
A(t) = 2 at t = 0.33014122063168294490173944063355594394361494532642...
  where 2 = Sum_{n=-oo..+oo} t^n * (1 + t^n)^(2*n).
A(t) = -1 at t = -0.57221202613754835881500708971837082259712665852148...
A(t) = -2 at t = -0.66124771863833308133360587362156745037996654826889...
A(t) = -3 at t = -0.72841228559829175547612598129696947453305714538354...
A(t) = -4 at t = -0.90975449896027994776675798799643226140294233213401...
A(4/5) = 39.597156112579883800797829785472315940190856875500...
A(3/4) = 18.522637966827153559321082877260756270457362912092...
A(2/3) = 8.2917909754417331599016245586686519315443444070756...
A(3/5) = 5.3942577326786364433206097043093210828422082884565...
A(1/2) = 3.3971121875472777749836900920631175982646917998641...
  where A(1/2) = Sum_{n=-oo..+oo} (2^n + 1)^(2*n) / 2^(2*n^2+n).
A(2/5) = 2.4226617866265771206729430879848898772232404418272...
A(1/3) = 2.0164022766484546805373278337731916678136050742206...
  where A(1/3) = Sum_{n=-oo..+oo} (3^n + 1)^(2*n) / 3^(2*n^2+n).
A(1/4) = 1.6529591092151291503041860933179009814428123139546...
  where A(1/4) = Sum_{n=-oo..+oo} (4^n + 1)^(2*n) / 4^(2*n^2+n).
A(1/5) = 1.4841513733060571811336245213703004776194631749017...
  where A(1/5) = Sum_{n=-oo..+oo} (5^n + 1)^(2*n) / 5^(2*n^2+n).
(End)
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    seq(add(binomial(2*n/d, d-1) + (-1)^(n/d+1) * binomial(n/d, 2*d-1), d in divisors(n)), n = 1..70); # Peter Bala, Mar 02 2025
  • Mathematica
    terms = 100; max = 2 terms; 1/2 Sum[x^n*(1 + x^n)^n, {n, -max, max}] + O[x]^max // CoefficientList[#, x^2]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n) = my(A=1); A = sum(k=-2*n-2, 2*n+2, x^k*(1+x^k)^k/2 + O(x^(2*n+2)) ); polcoef(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-2*n-2, 2*n+2, x^(k^2-k) / (1 + x^k)^k /2  + O(x^(2*n+2)) ); polcoef(A, 2*n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-sqrtint(n)-1, n+1, x^k*((1+x^k)^(2*k) + (1-x^k)^(2*k))/2 + O(x^(n+1)) ); polcoef(A, n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-n-1, n+1, x^k*(1+x^k)^(2*k) + O(x^(n+1)) ); polcoef(A, n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A=1); A = sum(k=-n-1, n+1, x^(2*k^2-k)/(1-x^k + O(x^(n+1)))^(2*k)  ); polcoef(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

The g.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (1 + x^n)^n.
(2) A(x^2) = (1/2) * Sum_{n=-oo..+oo} (-x)^n * (1 - x^n)^n.
(3) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + x^n)^n.
(4) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 - x^n)^n.
(5) A(x) = Sum_{n=-oo..+oo} x^n * (1 + x^n)^(2*n).
(6) A(x) = Sum_{n=-oo..+oo} x^n * (1 - x^n)^(2*n).
(7) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 - x^n)^(2*n).
(8) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + x^n)^(2*n).
a(2^n) = 1 for n > 0 (conjecture).
a(p) = p+1 for primes p > 3 (conjecture).
From Peter Bala, Jan 23 2021: (Start)
The following are conjectural:
A(x^2) = Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1) )^(2*n+1).
Equivalently: A(x^2) = Sum_{n = -oo..+oo} x^(4*n^2 + 2*n)/(1 + x^(2*n+1))^(2*n+1).
a(2*n+1) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1))^(4*n+2)
More generally, for k = 1,2,3,..., a((2^k)*(2*n + 1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + x^(2*n+1))^(2^(k+1)*(2*n+1)).
a(2*n+1) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 + x^n)^(2*n) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 - x^n)^(2*n).
More generally, for k = 1,2,3,...,
a((2^k)*(2*n+1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 + x^n)^(2^(k+1)*n) = [x^(2*n+1)] Sum_{n = -oo..+oo} (-1)^(n+1)*x^n*(1 - x^n)^(2^(k+1)*n).
a(4*n+2) = [x^(4*n+2)] Sum_{n = -oo..+oo} (-1)^n*x^n*(1 + x^n)^(2*n) = [x^(4*n+2)] Sum_{n = -oo..+oo} (-1)^n*x^n*(1 - x^n)^(2*n).
a(n) = [x^(2*n)] Sum_{n = -oo..+oo} (-1)^n*x^(2*n+1)*(1 + (-1)^n* x^(2*n+1) )^(2*n+1).
For k = 1,2,3,...,
a((2^k)*(2*n+1)) = [x^(2*n+1)] Sum_{n = -oo..+oo} x^(2*n+1)*(1 + (-1)^n* x^(2*n+1) )^(2^(k+1)*(2*n+1)).
(End)
From Peter Bala, Mar 02 2025: (Start)
a(n) = Sum_{d divides n} (binomial(2*n/d, d-1) + (-1)^(n/d+1) * binomial(n/d, 2*d-1)) for n >= 1.
Hence, a(p) = p + 1 for primes p > 3 and a(2^n) = 1 for n > 0 as conjectured above. (End)

A327249 Expansion of Sum_{k>=1} x^k * (1 + k * x^k)^k.

Original entry on oeis.org

1, 2, 1, 5, 1, 14, 1, 17, 28, 26, 1, 160, 1, 50, 251, 321, 1, 622, 1, 1607, 1030, 122, 1, 6257, 3126, 170, 2917, 12202, 1, 27291, 1, 28929, 6656, 290, 84036, 117721, 1, 362, 13183, 407121, 1, 417881, 1, 220100, 850312, 530, 1, 2246465, 823544, 2100626
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 15 2019

Keywords

Crossrefs

Cf. A006005 (positions of 1's), A087909, A217668, A260180, A327238.

Programs

  • Magma
    [&+[(n div d)^(d-1)*Binomial(n div d,d-1):d in Divisors(n)]:n in [1..50]]; // Marius A. Burtea, Sep 15 2019
    
  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^k (1 + k x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (n/#)^(# - 1) Binomial[n/#, # - 1] &], {n, 1, 50}]
  • PARI
    a(n) = sumdiv(n, d, (n/d)^(d-1) * binomial(n/d,d-1)); \\ Michel Marcus, Sep 15 2019

Formula

a(n) = Sum_{d|n} (n/d)^(d-1) * binomial(n/d,d-1).

A326607 G.f.: Sum_{n>=0} (2*n+1) * x^n * (1 - x^n)^n.

Original entry on oeis.org

1, 3, 2, 7, -1, 11, -3, 15, -19, 40, -34, 23, -6, 27, -76, 141, -139, 35, 61, 39, -270, 358, -208, 47, -35, 106, -298, 739, -874, 59, 725, 63, -1415, 1332, -526, 596, -617, 75, -664, 2185, -2069, 83, 1519, 87, -4696, 5740, -988, 95, -3571, 204, 3236, 4863, -8995, 107, 1891, 7701, -11578, 6784, -1594, 119, -941
Offset: 0

Views

Author

Paul D. Hanna, Oct 08 2019

Keywords

Comments

Compare the g.f. to the series: Sum_{n>=0} (-1)^n * (2*n+1) * x^(n*(n+1)) = Product_{n>=1} (1 - x^(2*n))^3.
Compare the g.f. to the series: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.

Examples

			G.f.: A(x) = 1 + 3*x + 2*x^2 + 7*x^3 - x^4 + 11*x^5 - 3*x^6 + 15*x^7 - 19*x^8 + 40*x^9 - 34*x^10 + 23*x^11 - 6*x^12 + 27*x^13 - 76*x^14 + 141*x^15 + ...
where A(x) is equal to the series given by
A(x) = 1 + 3*x*(1-x) + 5*x^2*(1-x^2)^2 + 7*x^3*(1-x^3)^3 + 9*x^4*(1-x^4)^4 + 11*x^5*(1-x^5)^5 + 13*x^6*(1-x^6)^6 + 15*x^7*(1-x^7)^7 + ...
Also,
A(x) = (1 + x)/(1 - x)^2 - (3 + x^2)*x^2/(1 - x^2)^3 + (5 + x^3)*x^6/(1 - x^3)^4 - (7 + x^4)*x^12/(1 - x^4)^5 + (9 + x^5)*x^20/(1 - x^5)^6 - (11 + x^6)*x^30/(1 - x^6)^7 + (13 + x^7)*x^42/(1 - x^7)^8 + ...
		

Crossrefs

Programs

  • PARI
    /* By definition */
    {a(n) = my(A = sum(m=0, n, (2*m + 1) * x^m * (1 - x^m + x*O(x^n))^m)); polcoeff(A, n)}
    for(n=0, 60, print1(a(n), ", "))
    
  • PARI
    /* Accelerated series */
    {a(n) = my(A = sum(m=0, sqrtint(n+1), (-1)^m * (2*m + 1 + x^(m+1))* x^(m*(m+1)) / (1 - x^(m+1) + x*O(x^n))^(m+2) )); polcoeff(A, n)}
    for(n=0, 60, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} (2*n+1) * x^n * (1 - x^n)^n.
G.f.: Sum_{n>=0} (-1)^n * (2*n+1 + x^(n+1)) * x^(n*(n+1)) / (1 - x^(n+1))^(n+2).
Showing 1-3 of 3 results.