cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A217668 G.f.: Sum_{n>=0} x^n*(1 + x^n)^n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 5, 1, 5, 4, 6, 1, 14, 1, 8, 11, 13, 1, 25, 1, 22, 22, 12, 1, 61, 6, 14, 37, 50, 1, 77, 1, 73, 56, 18, 36, 175, 1, 20, 79, 211, 1, 135, 1, 188, 232, 24, 1, 421, 8, 236, 137, 313, 1, 307, 331, 422, 172, 30, 1, 1423, 1, 32, 295, 601, 716, 727, 1
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + x^3 + 3*x^4 + x^5 + 5*x^6 + x^7 + 5*x^8 +...
where we have the following series identity:
A(x) = 1 + x*(1+x) + x^2*(1+x^2)^2 + x^3*(1+x^3)^3 + x^4*(1+x^4)^4 + x^5*(1+x^5)^5  + x^6*(1+x^6)^6 + x^7*(1+x^7)^7 + x^8*(1+x^8)^8 + x^9*(1+x^9)^9 +...
A(x) = 1/(1-x) + x^2/(1-x^2)^2 + x^6/(1-x^3)^3 + x^12/(1-x^4)^4 + x^20/(1-x^5)^5 + x^30/(1-x^6)^6 + x^42/(1-x^7)^7 + x^56/(1-x^8)^8 +...
		

Crossrefs

Programs

  • Mathematica
    terms = 100; Sum[x^n*(1 + x^n)^n, {n, 0, terms}] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, May 16 2017 *)
  • PARI
    {a(n,t=1)=polcoeff(sum(m=0,n,x^m*(t+x^m +x*O(x^n))^m),n)}
    for(n=0,100,print1(a(n),", "))
    
  • PARI
    {a(n,t=1)=local(A=1+x); A=sum(k=0, sqrtint(n+1), x^(k*(k+1))/(1 - t*x^(k+1) +x*O(x^n))^(k+1) ); polcoeff(A, n)}
    for(n=0,100,print1(a(n),", ")) \\ Paul D. Hanna, Sep 13 2014
    
  • PARI
    {a(n) = if(n==0,1, sumdiv(n,d, binomial(n/d,d-1)) )}
    for(n=0,100,print1(a(n),", ")) \\ Paul D. Hanna, Apr 25 2018

Formula

G.f.: Sum_{n>=0} x^(n*(n+1)) / (1 - x^(n+1))^(n+1). - Paul D. Hanna, Sep 13 2014
a(n) = Sum_{d|n} binomial(n/d, d-1) for n>0 with a(0) = 1. - Paul D. Hanna, Apr 25 2018

A338682 a(n) = Sum_{d|n} (-1)^(d-1) * binomial(d+n/d-1, d).

Original entry on oeis.org

1, 1, 4, 0, 6, 3, 8, -8, 20, 0, 12, -12, 14, -7, 72, -65, 18, 10, 20, -61, 142, -33, 24, -203, 152, -52, 248, -183, 30, 121, 32, -617, 398, -102, 828, -619, 38, -133, 600, -896, 42, 140, 44, -870, 2864, -207, 48, -4438, 1766, 751, 1192, -1587, 54, -348, 4424, -3011, 1598, -348, 60
Offset: 1

Views

Author

Seiichi Manyama, Apr 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# - 1) * Binomial[# + n/# - 1, #] &]; Array[a, 60] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*binomial(d+n/d-1, d));
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, 1-1/(1+x^k)^k))
    
  • PARI
    N=66; x='x+O('x^N); Vec(-sum(k=1, N, (-x)^k/(1-x^k)^(k+1)))

Formula

G.f.: Sum_{k >= 1} (1 - 1/(1 + x^k)^k).
G.f.: - Sum_{k >= 1} (-x)^k/(1 - x^k)^(k+1).
If p is prime, a(p) = (-1)^(p-1) + p.

A338688 a(n) = - Sum_{d|n} (-n/d)^d * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 1, 4, -5, 6, 2, 8, -121, 172, 44, 12, -759, 14, 566, 5536, -7665, 18, -6877, 20, 2744, 70862, 21218, 24, -570573, 218776, 104324, 918568, 942479, 30, -3693495, 32, -9408481, 11779582, 2223344, 19935756, -15628120, 38, 9954650, 145283360, -371959011, 42, -382916059
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-n/#)^# * Binomial[# + n/# - 2, # - 1] &]; Array[a, 40] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = -sumdiv(n, d, (-n/d)^d*binomial(d+n/d-2, d-1));
    
  • PARI
    N=66; x='x+O('x^N); Vec(sum(k=1, N, k*(x/(1+k*x^k))^k))

Formula

G.f.: Sum_{k>=1} k * (x/(1 + k * x^k))^k.
If p is prime, a(p) = (-1)^(p-1) + p.

A338689 a(n) = Sum_{d|n} (-1)^(d-1) * (n/d)^n * binomial(d+n/d-2, d-1).

Original entry on oeis.org

1, 3, 28, 223, 3126, 44660, 823544, 16514047, 387538588, 9951176994, 285311670612, 8903202187413, 302875106592254, 11107259264162760, 437894348359764856, 18444492187995996159, 827240261886336764178, 39345059356329821149097
Offset: 1

Views

Author

Seiichi Manyama, Apr 24 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(# - 1) * (n/#)^n * Binomial[# + n/# - 2, # - 1] &]; Array[a, 20] (* Amiram Eldar, Apr 24 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(d-1)*(n/d)^n*binomial(d+n/d-2, d-1));
    
  • PARI
    N=20; x='x+O('x^N); Vec(sum(k=1, N, (k*x/(1+(k*x)^k))^k))

Formula

G.f.: Sum_{k>=1} (k * x/(1 + (k * x)^k))^k.
If p is prime, a(p) = (-1)^(p-1) + p^p.

A344777 a(n) = Sum_{d|n} (-1)^(n/d-1) * binomial(d+n/d-1, d).

Original entry on oeis.org

1, -1, 4, -6, 6, -3, 8, -22, 20, 0, 12, -44, 14, 7, 72, -95, 18, -10, 20, -71, 142, 33, 24, -399, 152, 52, 248, -57, 30, -121, 32, -679, 398, 102, 828, -685, 38, 133, 600, -1568, 42, -140, 44, 318, 2864, 207, 48, -5858, 1766, -751, 1192, 831, 54, 348, 4424, -3979, 1598, 348, 60
Offset: 1

Views

Author

Seiichi Manyama, May 28 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^(n/# - 1) * Binomial[# + n/# - 1, #] &]; Array[a, 60] (* Amiram Eldar, May 28 2021 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d-1)*binomial(d+n/d-1, d));
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1+x^k)^(k+1)))

Formula

G.f.: Sum_{k >= 1} x^k/(1 + x^k)^(k+1).
If p is prime, a(p) = 1 + (-1)^(p-1) * p.

A360801 Expansion of Sum_{k>0} (x / (1 - 2 * x^k))^k.

Original entry on oeis.org

1, 3, 5, 13, 17, 51, 65, 169, 281, 603, 1025, 2373, 4097, 8655, 16685, 33969, 65537, 134151, 262145, 530269, 1050481, 2108439, 4194305, 8420201, 16778337, 33607707, 67120565, 134338493, 268435457, 537151131, 1073741825, 2148024289, 4295035145, 8591048739
Offset: 1

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, 2^(n/# - 1) * Binomial[# + n/# - 2, # - 1] &]; Array[a, 30] (* Amiram Eldar, Aug 02 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (x/(1-2*x^k))^k))
    
  • PARI
    a(n) = sumdiv(n, d, 2^(n/d-1)*binomial(d+n/d-2, d-1));

Formula

a(n) = Sum_{d|n} 2^(n/d-1) * binomial(d+n/d-2,d-1).
If p is prime, a(p) = 1 + 2^(p-1).
Showing 1-6 of 6 results.