cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A261615 Expansion of Product_{k>=0} (1 + x^(3*k+1))^2.

Original entry on oeis.org

1, 2, 1, 0, 2, 4, 2, 2, 5, 4, 3, 8, 10, 6, 9, 14, 11, 14, 22, 18, 17, 30, 32, 28, 41, 46, 39, 54, 68, 60, 73, 94, 85, 96, 131, 128, 130, 170, 175, 176, 229, 246, 237, 294, 330, 320, 386, 446, 430, 492, 582, 578, 642, 762, 763, 818, 977, 1008, 1061, 1254, 1311
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 26 2015

Keywords

Comments

Self-convolution of A261612.
In general, if a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} (1 + x^(a*k+b))^2, then a(n) ~ exp(Pi*sqrt(2*n/(3*a))) / (2^(2*b/a + 1/4) * 3^(1/4) * a^(1/4) * n^(3/4)).

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(3*k+1))^2, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n)/3) / (2^(11/12) * sqrt(3) * n^(3/4)).

A261632 Expansion of Product_{k>=0} 1/(1-x^(4*k+1))^3.

Original entry on oeis.org

1, 3, 6, 10, 15, 24, 37, 54, 75, 103, 144, 198, 265, 348, 456, 599, 777, 993, 1262, 1602, 2028, 2543, 3165, 3930, 4868, 6003, 7359, 8991, 10965, 13329, 16138, 19473, 23448, 28171, 33738, 40293, 48025, 57132, 67803, 80267, 94845, 111888, 131736, 154779, 181530
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(4*k+1))^3, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n/2)) * 2^(3/8) * Gamma(1/4)^3 / (16 * Pi^(9/4) * n^(3/8)).

A261636 Expansion of Product_{k>=0} 1/(1-x^(4*k+1))^4.

Original entry on oeis.org

1, 4, 10, 20, 35, 60, 100, 160, 245, 364, 536, 780, 1115, 1564, 2166, 2980, 4065, 5484, 7326, 9720, 12830, 16824, 21902, 28344, 36510, 46820, 59736, 75844, 95910, 120844, 151688, 189668, 236330, 293564, 363542, 448804, 552425, 678144, 830338, 1014052, 1235296
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Comments

In general, if j > 0, a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} 1/(1 - x^(a*k+b))^j, then a(n) ~ Gamma(b/a)^j * 2^(-(j+5)/4 - j*b/(2*a)) * 3^((j-1)/4 - j*b/(2*a)) * j^(-(j-1)/4 + j*b/(2*a)) * a^(-(j+1)/4 + j*b/(2*a)) * Pi^(-j + j*b/a) * n^((j-3)/4 - j*b/(2*a)) * exp(Pi*sqrt(2*j*n/(3*a))).

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(4*k+1))^4, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) * 6^(1/4) * Gamma(1/4)^4 / (32 * Pi^3 * n^(1/4)).

A261631 Expansion of Product_{k>=0} 1/(1-x^(3*k+1))^3.

Original entry on oeis.org

1, 3, 6, 10, 18, 30, 46, 69, 105, 154, 219, 309, 434, 597, 813, 1100, 1476, 1959, 2585, 3387, 4410, 5709, 7353, 9414, 12001, 15231, 19242, 24205, 30348, 37902, 47165, 58500, 72342, 89169, 109599, 134337, 164221, 200226, 243537, 295496, 357732, 432117, 520858
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(3*k+1))^3, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) * Gamma(1/3)^3 / (4 * Pi^2 * sqrt(6*n)).

A261635 Expansion of Product_{k>=0} 1/(1-x^(3*k+1))^4.

Original entry on oeis.org

1, 4, 10, 20, 39, 72, 124, 204, 331, 524, 806, 1216, 1813, 2660, 3846, 5500, 7790, 10916, 15158, 20880, 28544, 38736, 52226, 69972, 93200, 123460, 162700, 213340, 278459, 361860, 468252, 603484, 774844, 991220, 1263576, 1605392, 2033172, 2566972, 3231338
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 27 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1-x^(3*k+1))^4, {k, 0, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi*sqrt(2*n)/3) * Gamma(1/3)^4 / (8 * 2^(1/12) * sqrt(3) * Pi^(8/3) * n^(5/12)).

A374018 Expansion of Product_{k>=1} 1 / (1 - x^(3*k-1))^2.

Original entry on oeis.org

1, 0, 2, 0, 3, 2, 4, 4, 7, 6, 13, 10, 19, 18, 27, 30, 42, 44, 63, 66, 91, 100, 130, 144, 187, 206, 263, 294, 364, 412, 506, 568, 696, 782, 943, 1070, 1273, 1444, 1713, 1936, 2285, 2586, 3027, 3428, 3996, 4516, 5243, 5924, 6841, 7730, 8895, 10030, 11512, 12966, 14825, 16696
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 25 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Product[1/(1 - x^(3 k - 1))^2, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} A078182(k) * a(n-k).
a(n) = Sum_{k=0..n} A035386(k) * A035386(n-k).
a(n) ~ exp(2*Pi*sqrt(n)/3) * Pi^(4/3) / (3^(3/2) * Gamma(1/3)^2 * n^(11/12)). - Vaclav Kotesovec, Jun 25 2024
Showing 1-6 of 6 results.