A262776 a(n) = Fibonacci(n!) mod Fibonacci(n)!.
0, 0, 0, 0, 0, 0, 20160, 1098377280, 10712200669548618240, 157910199555786679826546221836620444160, 12162675222629942931022379230724715707339402614012620710827200735689241600
Offset: 0
Examples
a(0) = Fibonacci(0!) mod Fibonacci(0)! = 1 mod 1 = 0. a(1) = Fibonacci(1!) mod Fibonacci(1)! = 1 mod 1 = 0. a(2) = Fibonacci(2!) mod Fibonacci(2)! = 1 mod 1 = 0. a(3) = Fibonacci(3!) mod Fibonacci(3)! = 8 mod 2 = 0. a(4) = Fibonacci(4!) mod Fibonacci(4)! = 46368 mod 6 = 0.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..14
Programs
-
Magma
[Fibonacci(Factorial(n)) mod Factorial(Fibonacci(n)): n in [0..10]]; // Vincenzo Librandi, Oct 01 2015
-
Mathematica
Table[Mod[Fibonacci[n!], Fibonacci[n]!], {n, 0, 9}] (* Michael De Vlieger, Oct 01 2015 *)
-
PARI
a(n) = fibonacci(n!) % fibonacci(n)!; vector(10, n, a(n-1))
-
Python
from gmpy2 import fac, fib def A262776(n): if n < 2: return 0 a, b, m = 0, 1, fac(fib(n)) for i in range(fac(n)-1): b, a = (b+a) % m, b return int(b) # Chai Wah Wu, Oct 03 2015
Extensions
a(10) from Alois P. Heinz, Oct 01 2015
Comments