cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A262776 a(n) = Fibonacci(n!) mod Fibonacci(n)!.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 20160, 1098377280, 10712200669548618240, 157910199555786679826546221836620444160, 12162675222629942931022379230724715707339402614012620710827200735689241600
Offset: 0

Views

Author

Altug Alkan, Oct 01 2015

Keywords

Comments

Inspired by A261626.
Is there a possibility of observing that a(n) = 0 for n > 5?

Examples

			a(0) = Fibonacci(0!) mod Fibonacci(0)! = 1 mod 1 = 0.
a(1) = Fibonacci(1!) mod Fibonacci(1)! = 1 mod 1 = 0.
a(2) = Fibonacci(2!) mod Fibonacci(2)! = 1 mod 1 = 0.
a(3) = Fibonacci(3!) mod Fibonacci(3)! = 8 mod 2 = 0.
a(4) = Fibonacci(4!) mod Fibonacci(4)! = 46368 mod 6 = 0.
		

Crossrefs

Programs

  • Magma
    [Fibonacci(Factorial(n)) mod Factorial(Fibonacci(n)): n in [0..10]]; // Vincenzo Librandi, Oct 01 2015
    
  • Mathematica
    Table[Mod[Fibonacci[n!], Fibonacci[n]!], {n, 0, 9}] (* Michael De Vlieger, Oct 01 2015 *)
  • PARI
    a(n) = fibonacci(n!) % fibonacci(n)!;
    vector(10, n, a(n-1))
    
  • Python
    from gmpy2 import fac, fib
    def A262776(n):
        if n < 2:
            return 0
        a, b, m = 0, 1, fac(fib(n))
        for i in range(fac(n)-1):
            b, a = (b+a) % m, b
        return int(b) # Chai Wah Wu, Oct 03 2015

Formula

a(n) = A063374(n) mod A060001(n), for n > 0.

Extensions

a(10) from Alois P. Heinz, Oct 01 2015
Showing 1-1 of 1 results.