A103261 Number of partitions of 2n into parts with 10 types c^1 c^2...C^10 of each part. The even parts appear with multiplicity 1 for each type . The odd parts occur with multiplicity 2 for each part.
1, 20, 200, 1360, 7200, 32024, 125280, 443680, 1450240, 4435940, 12827888, 35346800, 93377920, 237675640, 585229760, 1398704736, 3253934080, 7386124520, 16392493800, 35634450320, 75992326592, 159199081600, 328027789600
Offset: 0
Keywords
Examples
a(2)=200 because we have 10 types of 4, 45 ways of writing 4 in terms of ten of 2's only or ten of 11's only and 100 ways of writing 2's combined with 11's so the total number of ways of writing 4 is 200.
Crossrefs
Programs
-
Maple
series(product(((1+x^k)*(1-x^(2*k)))^(10)/((1-x^k)*(1+x^(2*k)))^(10),k=1..100),x=0,100);
-
Mathematica
nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^10,{k,0,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Aug 28 2015 *)
Formula
G.f.:(theta_4(0, x^2)/theta_4(0, x))^10= (theta_3(0, x)/theta_4(0, x))^5.
a(n) ~ exp(Pi*sqrt(5*n)) * 5^(1/4) / (64 * sqrt(2) * n^(3/4)). - Vaclav Kotesovec, Aug 28 2015
Extensions
Example corrected by Vaclav Kotesovec, Sep 01 2015
Comments