cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261690 a(1) = 1; for n>1, a(n) is the smallest number not already present which is entailed by the rules (i) k present => 3*k+1 present; (ii) 2*k present => k present.

Original entry on oeis.org

1, 4, 2, 7, 13, 22, 11, 34, 17, 40, 20, 10, 5, 16, 8, 25, 31, 49, 52, 26, 61, 67, 76, 38, 19, 58, 29, 79, 88, 44, 94, 47, 103, 115, 121, 133, 142, 71, 148, 74, 37, 112, 56, 28, 14, 43, 85, 130, 65, 157, 169, 175, 184, 92, 46, 23, 70, 35, 106, 53, 139, 160, 80
Offset: 1

Views

Author

Vladimir Shevelev, Aug 28 2015

Keywords

Comments

An analog of A109732 such that the statement 'the sequence is a permutation of the positive integers not divisible by 3' is equivalent to the (3*n+1)-conjecture for numbers not divisible by 3.
On Aug 29 2015, Max Alekseyev noted that, while the (3*n+1)-conjecture indeed implies that the sequence is a permutation of the positive integers not divisible by 3, the opposite statement is an open question. The author cannot yet prove this, so his previous comment is only a conjecture.
In connection with this, consider the following conjecture which could be called the (n-1)/3-conjecture. Let n be any number not divisible by 3. If n==1 (mod 3) and (n-1)/3 is not divisible by 3, then set n_1 = (n-1)/3. Otherwise set n_1 = 2*n. Conjecture. There exists an iteration n_m = 1. Does the (n-1)/3-conjecture imply the (3*n+1)-conjecture?
Example: 19->38->76->25->8->16->5->10->20->40->13->4->1.

Crossrefs