cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A261711 Triangle read by rows: T(n,k) is the number of words over alphabet {0,1,2,3} having exactly k occurrences of the string 01, where n>=0 and k>=0.

Original entry on oeis.org

1, 4, 15, 1, 56, 8, 209, 46, 1, 780, 232, 12, 2911, 1091, 93, 1, 10864, 4912, 592, 16, 40545, 21468, 3366, 156, 1, 151316, 91824, 17784, 1200, 20, 564719, 386373, 89238, 8010, 235, 1, 2107560, 1604984, 430992, 48624, 2120, 24, 7865521, 6598282, 2021103, 275724, 16255, 330, 1
Offset: 0

Views

Author

Ran Pan, Aug 29 2015

Keywords

Examples

			1
4
15 1
56 8
209 46 1
780 232 12
2911 1091 93 1
10864 4912 592 16
40545 21468 3366 156 1
151316 91824 17784 8010 20
		

Crossrefs

Column k=0 is A001353(n+1). The triangle is shifted from A207823.

Programs

  • Maple
    b:= proc(n, t) option remember; expand(`if`(n=0, 1,
          add(b(n-1, i)*`if`(t=1 and i=2, x, 1), i=1..4)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0)):
    seq(T(n), n=0..12);  # Alois P. Heinz, Aug 29 2015
  • Mathematica
    CoefficientList[#, y]& /@ CoefficientList[1/(1-4x-(y-1)x^2) + O[x]^13, x] // Flatten (* Jean-François Alcover, Jan 10 2023 *)

Formula

G.f.: 1/(1-4*x-(y-1)*x^2).