A261734 Expansion of Product_{k>=1} (1 + x^(4*k))/(1 + x^k).
1, -1, 0, -1, 2, -2, 1, -2, 4, -4, 3, -4, 8, -8, 6, -9, 14, -14, 12, -16, 24, -25, 22, -28, 40, -42, 38, -48, 65, -68, 64, -78, 102, -108, 104, -124, 159, -168, 164, -194, 242, -256, 254, -296, 362, -385, 386, -444, 536, -570, 576, -658, 782, -832, 848, -961
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- David J. Hemmer, Generating functions for fixed points of the Mullineux map, arXiv:2402.03643 [math.CO], 2024.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 14.
Crossrefs
Programs
-
Maple
seq(coeff(series(mul((1+x^(4*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, Jul 29 2018
-
Mathematica
nmax = 100; CoefficientList[Series[Product[(1 + x^(4*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
a(n) ~ (-1)^n * exp(sqrt(n)*Pi/2) / (4*sqrt(2)*n^(3/4)).