cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A109389 Expansion of q^(-1/12)eta(q)eta(q^6)/(eta(q^2)eta(q^3)) in powers of q.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 2, -2, 1, 0, 1, -2, 3, -3, 2, -1, 1, -3, 5, -5, 3, -1, 2, -5, 7, -7, 5, -3, 3, -7, 11, -11, 7, -4, 6, -11, 15, -15, 11, -7, 8, -15, 22, -22, 15, -10, 13, -22, 30, -30, 23, -16, 18, -30, 42, -42, 31, -22, 27, -43, 56, -56, 44, -33, 37, -57, 77, -77, 59, -45, 53, -79, 101, -101, 82, -64
Offset: 0

Views

Author

Michael Somos, Jun 26 2005

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			q - q^13 - q^61 + q^73 - q^85 + q^97 - q^133 + 2*q^145 - 2*q^157 + q^169 + ...
		

Crossrefs

Cf. A098884.
Cf. A081360 (m=2), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(3*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    QP = QPochhammer; s = QP[q]*(QP[q^6]/(QP[q^2]*QP[q^3])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^6+A)/eta(x^2+A)/eta(x^3+A), n))}

Formula

Euler transform of period 6 sequence [ -1, 0, 0, 0, -1, 0, ...].
G.f.: 1/(Product_{k>0} (1+x^(2k-1)+x^(4k-2))) = Product_{k>0} (1-x^(6k-1))(1-x^(6k-5)) = Product_{k>0} (1-x^k+x^(2k)) (where 1-x+x^2 is 6th cyclotomic polynomial).
Given g.f. A(x), then B(x)=x*A(x^12) satisfies 0=f(B(x), B(x^2), B(x^4)) where f(u, v, w)=(v^2+u^4)*(v^2+w^4)-2*v^4*(1-v*u^2*w^2).
Expansion of G(x^6) * H(x) - x * G(x) * H(x^6) where G(), H() are Rogers-Ramanujan functions.
a(n) = (-1)^n*A098884(n).
a(n) ~ (-1)^n * exp(sqrt(n)*Pi/3) / (2*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
a(n) = -(1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 26 2017

A070048 Number of partitions of n into odd parts in which no part appears more than thrice.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 11, 13, 16, 18, 21, 24, 27, 32, 36, 41, 48, 54, 61, 70, 78, 88, 100, 112, 127, 143, 159, 179, 199, 222, 248, 276, 308, 342, 380, 421, 465, 516, 570, 629, 697, 767, 845, 932, 1022, 1124, 1236, 1355, 1488, 1631, 1785, 1954, 2136
Offset: 0

Views

Author

N. J. A. Sloane, May 09 2002

Keywords

Comments

Also number of partitions of n into distinct parts in which no part is multiple of 4. - Vladeta Jovovic, Jul 31 2004
McKay-Thompson series of class 64a for the Monster group.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 4*x^8 + 5*x^9 + ...
T64a = 1/q + q^7 + q^15 + 2*q^23 + q^31 + 2*q^39 + 3*q^47 + 3*q^55 + 4*q^63 + ...
		

Crossrefs

Cf. A000700 (m=2), A003105 (m=3), A096938 (m=5), A261770 (m=6), A097793 (m=7), A261771 (m=8), A112193 (m=9), A261772 (m=10).

Programs

  • Haskell
    a070048 = p a042968_list where
       p _      0 = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Oct 01 2012
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^2, x^4], {x, 0, n}]; (* Michael Somos, Jul 01 2014 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^4] / (QPochhammer[ x] QPochhammer[ x^8]), {x, 0, n}]; (* Michael Somos, Jul 01 2014 *)
  • PARI
    {a(n) = local(A); if( n<0, 0 ,A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^4 + A) / (eta(x + A) * eta(x^8 + A)), n))};
    

Formula

G.f.: Product_{i>0} (1+x^i)/(1+x^(4*i)). - Vladeta Jovovic, Jul 31 2004
Expansion of chi(x) * chi(x^2) = psi(x) / psi(-x^2) = phi(-x^4) / psi(-x) = chi(-x^4) / chi(-x) in powers of x where phi(), psi(), chi() are Ramanujan theta functions. - Michael Somos, Jul 01 2014
Expansion of q^(1/8) * eta(q^2) * eta(q^4) / (eta(q) * eta(q^8)) in powers of q.
Euler transform of period 8 sequence [1, 0, 1, -1, 1, 0, 1, 0, ...].
Given g.f. A(x), then B(q) = A(q^8) / q satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u - v^3) * (u^3 - v) + 3*u*v. - Michael Somos, Jul 01 2014
G.f.: Product_{k>0} (1 - x^(8*k - 4)) / (1 - x^(2*k - 1)).
a(n) ~ exp(sqrt(n)*Pi/2) / (4*n^(3/4)) * (1 - (3/(4*Pi) + Pi/32) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017

Extensions

Additional comments from Michael Somos, Dec 04 2002

A145707 Expansion of chi(-q) / chi(-q^10) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 2, -2, 3, -3, 3, -4, 4, -5, 6, -6, 7, -8, 10, -11, 11, -13, 15, -17, 18, -20, 23, -25, 29, -32, 34, -39, 42, -47, 52, -56, 62, -68, 77, -83, 89, -99, 108, -119, 129, -139, 154, -167, 183, -199, 214, -234, 253, -276, 299, -322, 350
Offset: 0

Views

Author

Michael Somos, Oct 17 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^8 - 2*x^9 + 3*x^10 + ...
G.f. = q^3 - q^11 - q^27 + q^35 - q^43 + q^51 - q^59 + 2*q^67 - 2*q^75 + ...
		

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(10*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^10, x^10], {x, 0, n}]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^20 + A) / (eta(x^2 + A) * eta(x^10 + A)), n))};

Formula

Expansion of q^(-3/8) * eta(q) * eta(q^20) / (eta(q^2) * eta(q^10)) in powers of q.
Euler transform of period 20 sequence [ -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (1280 t)) = f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(2*k - 1)) / (1 - x^(20*k - 10)).
a(n) = (-1)^n * A145703(n) = A145704(2*n + 1) = - A145705(2*n + 1).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/5)) / (4*5^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A261736 Expansion of Product_{k>=1} (1 + x^(6*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 2, -2, 2, -3, 3, -3, 5, -5, 5, -7, 8, -8, 11, -12, 12, -16, 17, -18, 23, -25, 26, -32, 35, -37, 45, -49, 52, -62, 67, -72, 85, -92, 98, -114, 124, -133, 153, -166, 178, -203, 220, -236, 268, -290, 311, -350, 379, -407, 456, -493, 529
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(6*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(6*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(sqrt(2*n)*Pi/3) / (2^(7/4)*sqrt(3)*n^(3/4)).

A133563 Expansion of chi(-q) / chi(-q^5) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, 0, 0, -1, 1, -1, 2, -2, 2, -2, 2, -1, 2, -3, 2, -3, 5, -5, 4, -5, 6, -4, 4, -7, 7, -7, 10, -11, 10, -12, 12, -10, 12, -15, 14, -16, 22, -22, 20, -24, 26, -22, 24, -30, 31, -33, 40, -43, 42, -46, 48, -45, 50, -58, 58, -63, 77, -79, 76, -86, 92, -86, 92, -107, 110, -116, 134, -141, 142, -154, 160, -157
Offset: 0

Views

Author

Michael Somos, Sep 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015
Denoted by t in Andrews and Berndt 2005. - Michael Somos, Apr 25 2016

Examples

			G.f. = 1 - x - x^3 + x^4 - x^7 + x^8 - x^9 + 2*x^10 - 2*x^11 - 2*x^13 + ...
G.f. = q - q^7 - q^19 + q^25 - q^43 + q^49 - q^55 + 2*q^61 - 2*q^67 + 2*q^73 - ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 337.

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[  QPochhammer[ x, x^2] / QPochhammer[ x^5, x^10], {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( eta(x + A) * eta(x^10 + A) / (eta(x^2 + A) * eta(x^5 + A)), n))};

Formula

Expansion of q^(-1/6) * eta(q) * eta(q^10) / ( eta(q^2) * eta(q^5) ) in powers of q.
Euler transform of period 10 sequence [ -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (360 t)) = f(t) where q = exp(2 Pi i t).
Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v * (u^2 - v) + w^2 * (u^2 + v).
Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(x^q), B(q^9)) where f(u, v, w) = (u^3 + w^3) * (v + v^3) + 2 * v^4 - v^2 + u^3 * w^3 * ( 2 - v^2 ).
Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(q^2), B(q^5), B(q^10)) where f(u1, u2, u5, u10) = u1^2 * u5^2 + u1^2 * u10^4 + u1 * u2^2 * u5 * u10^2 + u2 * u5^2 * u10^3 + u2^3 * u10^3 - u2^2 * u10^2 - u1^3 * u5^3 - u1^4 * u10^2 - u1^3 * u2^2 * u5 - u1^2 * u2 * u5^2 * u10.
G.f.: Product_{k>0} P10(x^k) where P10 is the 10th cyclotomic polynomial.
G.f.: Product_{k>0} (1 + x^(5*k)) / (1 + x^k).
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/15)) / (2^(5/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015

A261733 Expansion of Product_{k>=1} (1 + x^(9*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 2, -1, 1, -2, 2, -2, 2, -3, 4, -3, 4, -5, 5, -6, 6, -7, 8, -8, 9, -9, 10, -12, 11, -13, 15, -16, 17, -18, 22, -23, 23, -27, 30, -31, 32, -35, 40, -40, 42, -48, 51, -54, 57, -63, 69, -71, 78, -85, 90, -97, 102, -110, 118, -124, 133
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd.

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A145707 (m=10).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, -1, 0,
            -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1]
           [1+irem(d, 18)], d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 01 2015
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(9*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)/3) / (2 * 3^(3/4) * n^(3/4)).

A261735 Expansion of Product_{k>=1} (1 + x^(8*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 3, -3, 2, -3, 4, -4, 4, -5, 8, -8, 7, -9, 11, -12, 12, -14, 20, -21, 19, -24, 28, -30, 31, -35, 45, -48, 47, -55, 64, -68, 71, -80, 97, -103, 104, -119, 135, -145, 152, -168, 198, -211, 216, -243, 272, -291, 307, -337, 386, -412
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd.

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(8*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(8*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(sqrt(5*n/6)*Pi/2) * 5^(1/4) / (2^(11/4)*3^(1/4)*n^(3/4)).

A113297 Expansion of chi(-q) / chi(-q^7) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, 0, 1, -2, 1, -1, 2, -2, 3, -3, 3, -4, 4, -4, 5, -4, 4, -6, 6, -7, 7, -8, 11, -11, 10, -12, 14, -15, 15, -14, 17, -20, 19, -21, 24, -26, 30, -31, 32, -37, 38, -40, 45, -44, 47, -54, 56, -60, 64, -68, 79, -83, 83, -92, 100, -105, 110, -112, 123, -136, 138, -147, 160, -170, 185, -194, 203
Offset: 0

Views

Author

Michael Somos, Oct 23 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 + x^8 - 2*x^9 + x^10 - x^11 + ...
G.f. = q - q^5 - q^13 + q^17 - q^21 + q^25 + q^33 - 2*q^37 + q^41 + ...
		

Crossrefs

Cf. A097793.
Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(7*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..80); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^14] / (QPochhammer[ x^2] QPochhammer[ x^7]), {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x  + A) * eta(x^14 + A) / (eta(x^2 + A) * eta(x^7 + A)), n))};

Formula

Expansion of q^(-1/4) * eta(q) * eta(q^14) / ( eta(q^2) * eta(q^7) ) in powers of q.
Euler transform of period 14 sequence [ -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, ...].
G.f. A(x) = G(x^7) * H(x^2) - x * G(x^2) * H(x^7) where G(x) and H(x) are the Rogers-Ramanujan functions.
G.f.: Product_{k>0} (1 + x^(7*k)) / (1 + x^k).
Expansion of chi(-q) / chi(-q^7) in powers of q where chi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (224 t)) = f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} P14(x^k) where P14 is the 14th cyclotomic polynomial.
Convolution inverse is A097793.
a(n) ~ (-1)^n * exp(Pi*sqrt(n/7)) / (2^(3/2) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015

A301504 Expansion of Product_{k>=1} (1 + x^(4*k))*(1 + x^(4*k-3)).

Original entry on oeis.org

1, 1, 0, 0, 1, 2, 1, 0, 1, 3, 2, 0, 2, 5, 4, 1, 2, 7, 7, 2, 3, 10, 11, 4, 4, 14, 17, 8, 6, 19, 25, 13, 8, 25, 36, 21, 12, 33, 50, 33, 18, 43, 69, 49, 26, 56, 93, 71, 38, 72, 124, 102, 55, 92, 163, 142, 79, 118, 212, 195, 112, 151, 273, 265, 157, 193, 350, 354, 217, 246, 444
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 22 2018

Keywords

Comments

Number of partitions of n into distinct parts congruent to 0 or 1 mod 4.

Examples

			a(9) = 3 because we have [9], [8, 1] and [5, 4].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 + x^(4 k)) (1 + x^(4 k - 3)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[x^3 QPochhammer[-1, x^4] QPochhammer[-x^(-3), x^4]/(2 (1 + x) (1 - x + x^2)), {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Product[(1 + Boole[MemberQ[{0, 1}, Mod[k, 4]]] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A042948(k)).
a(n) ~ exp(Pi*sqrt(n/6)) / (4*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, Mar 23 2018

A339406 Number of partitions of n into an even number of parts that are not multiples of 4.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 5, 5, 10, 9, 16, 17, 29, 28, 44, 48, 73, 76, 110, 121, 172, 185, 253, 282, 381, 417, 549, 616, 802, 889, 1137, 1279, 1620, 1810, 2260, 2549, 3161, 3544, 4346, 4906, 5979, 6720, 8120, 9164, 11014, 12392, 14788, 16682, 19820, 22297, 26337, 29682, 34921, 39267
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 03 2020

Keywords

Examples

			a(6) = 5 because we have [5, 1], [3, 3], [3, 1, 1, 1], [2, 2, 1, 1] and [1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<1, 0,
          b(n, i-1, t)+`if`(irem(i, 4)=0, 0, b(n-i, min(n-i, i), 1-t))))
        end:
    a:= n-> b(n$2, 1):
    seq(a(n), n=0..55);  # Alois P. Heinz, Dec 03 2020
  • Mathematica
    nmax = 53; CoefficientList[Series[(1/2) (Product[(1 - x^(4 k))/(1 - x^k), {k, 1, nmax}] + Product[(1 + x^(4 k))/(1 + x^k), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: (1/2) * (Product_{k>=1} (1 - x^(4*k)) / (1 - x^k) + Product_{k>=1} (1 + x^(4*k)) / (1 + x^k)).
a(n) = (A001935(n) + A261734(n)) / 2.
Showing 1-10 of 13 results. Next