cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A109389 Expansion of q^(-1/12)eta(q)eta(q^6)/(eta(q^2)eta(q^3)) in powers of q.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 2, -2, 1, 0, 1, -2, 3, -3, 2, -1, 1, -3, 5, -5, 3, -1, 2, -5, 7, -7, 5, -3, 3, -7, 11, -11, 7, -4, 6, -11, 15, -15, 11, -7, 8, -15, 22, -22, 15, -10, 13, -22, 30, -30, 23, -16, 18, -30, 42, -42, 31, -22, 27, -43, 56, -56, 44, -33, 37, -57, 77, -77, 59, -45, 53, -79, 101, -101, 82, -64
Offset: 0

Views

Author

Michael Somos, Jun 26 2005

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			q - q^13 - q^61 + q^73 - q^85 + q^97 - q^133 + 2*q^145 - 2*q^157 + q^169 + ...
		

Crossrefs

Cf. A098884.
Cf. A081360 (m=2), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(3*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    QP = QPochhammer; s = QP[q]*(QP[q^6]/(QP[q^2]*QP[q^3])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^6+A)/eta(x^2+A)/eta(x^3+A), n))}

Formula

Euler transform of period 6 sequence [ -1, 0, 0, 0, -1, 0, ...].
G.f.: 1/(Product_{k>0} (1+x^(2k-1)+x^(4k-2))) = Product_{k>0} (1-x^(6k-1))(1-x^(6k-5)) = Product_{k>0} (1-x^k+x^(2k)) (where 1-x+x^2 is 6th cyclotomic polynomial).
Given g.f. A(x), then B(x)=x*A(x^12) satisfies 0=f(B(x), B(x^2), B(x^4)) where f(u, v, w)=(v^2+u^4)*(v^2+w^4)-2*v^4*(1-v*u^2*w^2).
Expansion of G(x^6) * H(x) - x * G(x) * H(x^6) where G(), H() are Rogers-Ramanujan functions.
a(n) = (-1)^n*A098884(n).
a(n) ~ (-1)^n * exp(sqrt(n)*Pi/3) / (2*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
a(n) = -(1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 26 2017

A219601 Number of partitions of n in which no parts are multiples of 6.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 65, 85, 111, 143, 184, 234, 297, 374, 470, 586, 729, 902, 1113, 1367, 1674, 2042, 2485, 3013, 3645, 4395, 5288, 6344, 7595, 9070, 10809, 12852, 15252, 18062, 21352, 25191, 29671, 34884, 40948, 47985, 56146, 65592
Offset: 0

Views

Author

Arkadiusz Wesolowski, Nov 23 2012

Keywords

Comments

Also partitions where parts are repeated at most 5 times. [Joerg Arndt, Dec 31 2012]

Examples

			7 = 7
  = 5 + 2
  = 5 + 1 + 1
  = 4 + 3
  = 4 + 2 + 1
  = 4 + 1 + 1 + 1
  = 3 + 3 + 1
  = 3 + 2 + 2
  = 3 + 2 + 1 + 1
  = 3 + 1 + 1 + 1 + 1
  = 2 + 2 + 2 + 1
  = 2 + 2 + 1 + 1 + 1
  = 2 + 1 + 1 + 1 + 1 + 1
  = 1 + 1 + 1 + 1 + 1 + 1 + 1
so a(7) = 14.
		

Crossrefs

Cf. A097797.
Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Mathematica
    m = 47; f[x_] := (x^6 - 1)/(x - 1); g[x_] := Product[f[x^k], {k, 1, m}]; CoefficientList[Series[g[x], {x, 0, m}], x] (* Arkadiusz Wesolowski, Nov 27 2012 *)
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 6], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
  • PARI
    for(n=0, 47, A=x*O(x^n); print1(polcoeff(eta(x^6+A)/eta(x+A), n), ", "))

Formula

G.f.: P(x^6)/P(x), where P(x) = prod(k>=1, 1-x^k).
a(n) ~ Pi*sqrt(5) * BesselI(1, sqrt(5*(24*n + 5)/6) * Pi/6) / (3*sqrt(24*n + 5)) ~ exp(Pi*sqrt(5*n)/3) * 5^(1/4) / (12 * n^(3/4)) * (1 + (5^(3/2)*Pi/144 - 9/(8*Pi*sqrt(5))) / sqrt(n) + (125*Pi^2/41472 - 27/(128*Pi^2) - 25/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A284326(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

A145707 Expansion of chi(-q) / chi(-q^10) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 2, -2, 3, -3, 3, -4, 4, -5, 6, -6, 7, -8, 10, -11, 11, -13, 15, -17, 18, -20, 23, -25, 29, -32, 34, -39, 42, -47, 52, -56, 62, -68, 77, -83, 89, -99, 108, -119, 129, -139, 154, -167, 183, -199, 214, -234, 253, -276, 299, -322, 350
Offset: 0

Views

Author

Michael Somos, Oct 17 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^8 - 2*x^9 + 3*x^10 + ...
G.f. = q^3 - q^11 - q^27 + q^35 - q^43 + q^51 - q^59 + 2*q^67 - 2*q^75 + ...
		

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(10*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^10, x^10], {x, 0, n}]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^20 + A) / (eta(x^2 + A) * eta(x^10 + A)), n))};

Formula

Expansion of q^(-3/8) * eta(q) * eta(q^20) / (eta(q^2) * eta(q^10)) in powers of q.
Euler transform of period 20 sequence [ -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (1280 t)) = f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(2*k - 1)) / (1 - x^(20*k - 10)).
a(n) = (-1)^n * A145703(n) = A145704(2*n + 1) = - A145705(2*n + 1).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/5)) / (4*5^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A261734 Expansion of Product_{k>=1} (1 + x^(4*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 2, -2, 1, -2, 4, -4, 3, -4, 8, -8, 6, -9, 14, -14, 12, -16, 24, -25, 22, -28, 40, -42, 38, -48, 65, -68, 64, -78, 102, -108, 104, -124, 159, -168, 164, -194, 242, -256, 254, -296, 362, -385, 386, -444, 536, -570, 576, -658, 782, -832, 848, -961
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(4*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(4*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(sqrt(n)*Pi/2) / (4*sqrt(2)*n^(3/4)).

A133563 Expansion of chi(-q) / chi(-q^5) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, 0, 0, -1, 1, -1, 2, -2, 2, -2, 2, -1, 2, -3, 2, -3, 5, -5, 4, -5, 6, -4, 4, -7, 7, -7, 10, -11, 10, -12, 12, -10, 12, -15, 14, -16, 22, -22, 20, -24, 26, -22, 24, -30, 31, -33, 40, -43, 42, -46, 48, -45, 50, -58, 58, -63, 77, -79, 76, -86, 92, -86, 92, -107, 110, -116, 134, -141, 142, -154, 160, -157
Offset: 0

Views

Author

Michael Somos, Sep 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015
Denoted by t in Andrews and Berndt 2005. - Michael Somos, Apr 25 2016

Examples

			G.f. = 1 - x - x^3 + x^4 - x^7 + x^8 - x^9 + 2*x^10 - 2*x^11 - 2*x^13 + ...
G.f. = q - q^7 - q^19 + q^25 - q^43 + q^49 - q^55 + 2*q^61 - 2*q^67 + 2*q^73 - ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 337.

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[  QPochhammer[ x, x^2] / QPochhammer[ x^5, x^10], {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( eta(x + A) * eta(x^10 + A) / (eta(x^2 + A) * eta(x^5 + A)), n))};

Formula

Expansion of q^(-1/6) * eta(q) * eta(q^10) / ( eta(q^2) * eta(q^5) ) in powers of q.
Euler transform of period 10 sequence [ -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (360 t)) = f(t) where q = exp(2 Pi i t).
Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v * (u^2 - v) + w^2 * (u^2 + v).
Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(x^q), B(q^9)) where f(u, v, w) = (u^3 + w^3) * (v + v^3) + 2 * v^4 - v^2 + u^3 * w^3 * ( 2 - v^2 ).
Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(q^2), B(q^5), B(q^10)) where f(u1, u2, u5, u10) = u1^2 * u5^2 + u1^2 * u10^4 + u1 * u2^2 * u5 * u10^2 + u2 * u5^2 * u10^3 + u2^3 * u10^3 - u2^2 * u10^2 - u1^3 * u5^3 - u1^4 * u10^2 - u1^3 * u2^2 * u5 - u1^2 * u2 * u5^2 * u10.
G.f.: Product_{k>0} P10(x^k) where P10 is the 10th cyclotomic polynomial.
G.f.: Product_{k>0} (1 + x^(5*k)) / (1 + x^k).
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/15)) / (2^(5/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015

A261733 Expansion of Product_{k>=1} (1 + x^(9*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 2, -1, 1, -2, 2, -2, 2, -3, 4, -3, 4, -5, 5, -6, 6, -7, 8, -8, 9, -9, 10, -12, 11, -13, 15, -16, 17, -18, 22, -23, 23, -27, 30, -31, 32, -35, 40, -40, 42, -48, 51, -54, 57, -63, 69, -71, 78, -85, 90, -97, 102, -110, 118, -124, 133
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd.

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A145707 (m=10).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, -1, 0,
            -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1]
           [1+irem(d, 18)], d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 01 2015
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(9*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)/3) / (2 * 3^(3/4) * n^(3/4)).

A261735 Expansion of Product_{k>=1} (1 + x^(8*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 3, -3, 2, -3, 4, -4, 4, -5, 8, -8, 7, -9, 11, -12, 12, -14, 20, -21, 19, -24, 28, -30, 31, -35, 45, -48, 47, -55, 64, -68, 71, -80, 97, -103, 104, -119, 135, -145, 152, -168, 198, -211, 216, -243, 272, -291, 307, -337, 386, -412
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd.

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(8*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(8*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(sqrt(5*n/6)*Pi/2) * 5^(1/4) / (2^(11/4)*3^(1/4)*n^(3/4)).

A113297 Expansion of chi(-q) / chi(-q^7) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, 0, 1, -2, 1, -1, 2, -2, 3, -3, 3, -4, 4, -4, 5, -4, 4, -6, 6, -7, 7, -8, 11, -11, 10, -12, 14, -15, 15, -14, 17, -20, 19, -21, 24, -26, 30, -31, 32, -37, 38, -40, 45, -44, 47, -54, 56, -60, 64, -68, 79, -83, 83, -92, 100, -105, 110, -112, 123, -136, 138, -147, 160, -170, 185, -194, 203
Offset: 0

Views

Author

Michael Somos, Oct 23 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 + x^8 - 2*x^9 + x^10 - x^11 + ...
G.f. = q - q^5 - q^13 + q^17 - q^21 + q^25 + q^33 - 2*q^37 + q^41 + ...
		

Crossrefs

Cf. A097793.
Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(7*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..80); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^14] / (QPochhammer[ x^2] QPochhammer[ x^7]), {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x  + A) * eta(x^14 + A) / (eta(x^2 + A) * eta(x^7 + A)), n))};

Formula

Expansion of q^(-1/4) * eta(q) * eta(q^14) / ( eta(q^2) * eta(q^7) ) in powers of q.
Euler transform of period 14 sequence [ -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, ...].
G.f. A(x) = G(x^7) * H(x^2) - x * G(x^2) * H(x^7) where G(x) and H(x) are the Rogers-Ramanujan functions.
G.f.: Product_{k>0} (1 + x^(7*k)) / (1 + x^k).
Expansion of chi(-q) / chi(-q^7) in powers of q where chi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (224 t)) = f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} P14(x^k) where P14 is the 14th cyclotomic polynomial.
Convolution inverse is A097793.
a(n) ~ (-1)^n * exp(Pi*sqrt(n/7)) / (2^(3/2) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015

A261770 Expansion of Product_{k>=1} (1 + x^k) / (1 + x^(6*k)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 6, 8, 9, 11, 13, 16, 19, 22, 26, 30, 35, 41, 47, 55, 63, 73, 84, 96, 110, 125, 143, 162, 184, 208, 235, 266, 300, 338, 380, 427, 479, 536, 600, 670, 748, 834, 929, 1034, 1149, 1277, 1417, 1571, 1740, 1925, 2129, 2351, 2596, 2863
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2015

Keywords

Comments

a(n) is the number of partitions of n into distinct parts where no part is a multiple of 6. - Joerg Arndt, Aug 31 2015

Crossrefs

Cf. A261736.
Cf. A000700 (m=2), A003105 (m=3), A070048 (m=4), A096938 (m=5), A097793 (m=7), A261771 (m=8), A112193 (m=9), A261772 (m=10).
Column k=6 of A290307.

Programs

  • Maple
    b:= proc(n, i) option remember;  local r;
          `if`(2*n>i*(i+1)-(j-> 6*j*(j+1))(iquo(i, 6, 'r')), 0,
          `if`(n=0, 1, b(n, i-1)+`if`(i>n or r=0, 0, b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 31 2015
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 + x^(6*k)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(5*n/2)/3) * 5^(1/4) / (2^(7/4) * sqrt(3) * n^(3/4)) * (1 - (9/(4*Pi*sqrt(10)) + 5*Pi*sqrt(5/2)/144) / sqrt(n)). - Vaclav Kotesovec, Aug 31 2015, extended Jan 21 2017
G.f.: Product_{k>=1} (1 - x^(12*k-6))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 07 2017

A328796 Expansion of chi(x) / chi(-x^6) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 5, 5, 5, 7, 8, 8, 11, 12, 12, 16, 17, 18, 23, 25, 26, 32, 35, 37, 45, 49, 52, 62, 67, 72, 85, 92, 98, 114, 124, 133, 153, 166, 178, 203, 220, 236, 268, 290, 311, 350, 379, 407, 456, 493, 529, 589, 636, 683, 758, 818, 877
Offset: 0

Views

Author

Michael Somos, Oct 27 2019

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution square is A328790.
G.f. is a period 1 Fourier series which satisfies f(-1 / (1728 t)) = 2^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A328880.

Examples

			G.f. = 1 + x + x^3 + x^4 + x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^9 + ...
G.f. = q^5 + q^29 + q^77 + q^101 + q^125 + 2*q^149 + 2*q^173 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^6, x^6], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n < 0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^2 * eta(x^12 + A)) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-5/24) * (eta(q^2)^2 * eta(q^12)) / (eta(q) * eta(q^4) * eta(q^6)) in power of q.
Euler transform of period 12 sequence [1, -1, 1, 0, 1, 0, 1, 0, 1, -1, 1, 0, ...].
G.f.: Product_{k>=1} (1 + x^(6*k))/(1 + (-x)^k) = Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(6*k)).
A261736(n) = (-1)^n * a(n).
a(n) ~ exp(sqrt(2*n)*Pi/3) / (2^(7/4)*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Oct 31 2019
Showing 1-10 of 11 results. Next