cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A003105 Schur's 1926 partition theorem: number of partitions of n into parts 6n+1 or 6n-1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 23, 26, 30, 34, 38, 42, 47, 53, 60, 67, 74, 82, 91, 102, 114, 126, 139, 153, 169, 187, 207, 228, 250, 274, 301, 331, 364, 399, 436, 476, 520, 569, 622, 679, 739, 804, 875, 953, 1038, 1128, 1224, 1327
Offset: 0

Views

Author

Keywords

Comments

There are many (at least 8) equivalent definitions of this sequence (besides the comments below, see also Schur, Alladi, Andrews). - N. J. A. Sloane, Jun 17 2011
Coefficients of replicable function number 72e. - N. J. A. Sloane, Jun 10 2015
Also number of partitions of n into odd parts in which no part appears more than twice, cf. A070048 and A096938. - Vladeta Jovovic, Jan 18 2005
Also number of partitions of n into distinct parts congruent to 1 or 2 modulo 3. (Follows from second g.f.) - N. Sato, Jul 20 2005
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A262928 and A261612. - Vaclav Kotesovec, Jan 13 2017
Convolution of A109702 and A109701. - Vaclav Kotesovec, Jan 21 2017

Examples

			G.f: A(x) = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 3*x^7 + 3*x^8 + 3*x^9 + 4*x^10 + ...
T72e = 1/q + q^11 + q^23 + q^35 + q^47 + 2*q^59 + 2*q^71 + 3*q^83 + ...
The logarithm of the g.f. begins:
log(A(x)) = x + x^2/2 + x^3/3 + x^4/4 + 6*x^5/5 + x^6/6 + 8*x^7/7 + x^8/8 + x^9/9 + 6*x^10/10 + 12*x^11/11 + x^12/12 + ... + A186099(n)*x^n/n + ... . - _Paul D. Hanna_, Feb 17 2013
		

References

  • K. Alladi, Refinements of Rogers-Ramanujan type identities. In Special Functions, q-Series and Related Topics (Toronto, ON, 1995), 1-35, Fields Inst. Commun., 14, Amer. Math. Soc., Providence, RI, 1997.
  • G. E. Andrews, Schur's theorem, partitions with odd parts and the Al-Salam-Carlitz polynomials. In q-Series From a Contemporary Perspective (South Hadley, MA, 1998), 45-56, Contemp. Math., 254, Amer. Math. Soc., Providence, RI, 2000.
  • H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
  • I. Schur, Zur Additiven Zahlentheorie, Ges. Abh., Vol. 2, Springer, pp. 43-50.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003105 n = p 1 n where
       p k m | m == 0 = 1 | m < k = 0 | otherwise = q k (m-k) + p (k+2) m
       q k m | m == 0 = 1 | m < k = 0 | otherwise = p (k+2) (m-k) + p (k+2) m
    -- Reinhard Zumkeller, Nov 12 2011
  • Maple
    with(combinat);
    A:=proc(n) local i, j, t3, t2, t1;
        t2:=0;
        t1:=firstpart(n);
        for j from 1 to numbpart(n)+2 do
            t3:=1;
            for i from 1 to nops(t1) do
                if (t1[i] mod 6) <> 1 and (t1[i] mod 6) <> 5 then t3:=0; fi;
            od;
            if t3=1 then t2:=t2+1; fi;
            if nops(t1) = 1 then RETURN(t2); fi;
            t1:=nextpart(t1);
        od;
    end;
    # brute-force Maple program from N. J. A. Sloane, Jun 17 2011
  • Mathematica
    max = 63; f[x_] := 1/Product[1 - x^k + x^(2k), {k, 0, max}]; CoefficientList[ Series[ f[x], {x, 0, max}], x] (* Jean-François Alcover, Dec 01 2011, after Vladeta Jovovic *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] / QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Jul 05 2014 *)
    nmax = 100; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 3] != 0, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}];], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 13 2017 *)
    nmax = 63; kmax = nmax/6;
    s = Flatten[{Range[0, kmax]*6 + 1}~Join~{Range[kmax]*6 - 1}];
    Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jan 09 2005 */
    
  • PARI
    {S(n,x)=sumdiv(n,d,d*(1-x^d)^(n/d))}
    {a(n)=polcoeff(exp(sum(k=1,n,S(k,x)*x^k/k)+x*O(x^n)),n)}
    for(n=0,60,print1(a(n),", "))
    /* Paul D. Hanna, Feb 17 2013 */
    

Formula

G.f.: 1/Product_{k>=0} (1-x^(6*k+1))*(1-x^(6*k+5)) = Product_{k>=0} (1+x^(3*k+1))*(1+x^(3*k+2)) = 1/Product_{k>=0} (1-x^k+x^(2*k)). - Vladeta Jovovic, Jun 08 2003
Expansion of chi(-x^3) / chi(-x) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Mar 04 2012
Expansion of f(x, x^2) / f(-x^3) = f(-x^6) / f(-x, -x^5) in powers of x where f() is Ramanujan theta function. - Michael Somos, Jul 05 2014
Expansion of q^(1/12) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jan 09 2005
Euler transform of period 6 sequence [1, 0, 0, 0, 1, 0, ...]. - Michael Somos, Jan 09 2005
Given g.f. A(x), then B(q) = (A(q^12) / q)^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u*v^4 + (1 - u^3) * v^3 + 6*u^2*v^2 + (u^4 - u)*v + u^3. - Michael Somos, Jan 09 2005
The logarithmic derivative equals A186099. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} A186099(n) * x^n/n ) where A186099(n) = sum of divisors of n congruent to 1 or 5 mod 6. - Paul D. Hanna, Feb 17 2013
G.f.: exp( Sum_{n>=1} S(n,x) * x^n/n ) where S(n,x) = Sum_{d|n} d*(1-x^d)^(n/d). - Paul D. Hanna, Feb 17 2013
a(n) ~ Pi*sqrt(2) / sqrt(3*(12*n-1)) * BesselI(1, Pi*sqrt(12*n-1) / (3*sqrt(6))) ~ exp(Pi*sqrt(2*n)/3) / (2^(5/4) * sqrt(3) * n^(3/4)) * (1 - (9/(8*Pi) + Pi/36)/sqrt(2*n) + (5 - 135/(4*Pi^2) + Pi^2/81)/(64*n)). - Vaclav Kotesovec, Aug 23 2015, extended Jan 09 2017
a(n) = (1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 21 2017

Extensions

More terms from Vladeta Jovovic, Jun 08 2003

A145707 Expansion of chi(-q) / chi(-q^10) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 2, -2, 3, -3, 3, -4, 4, -5, 6, -6, 7, -8, 10, -11, 11, -13, 15, -17, 18, -20, 23, -25, 29, -32, 34, -39, 42, -47, 52, -56, 62, -68, 77, -83, 89, -99, 108, -119, 129, -139, 154, -167, 183, -199, 214, -234, 253, -276, 299, -322, 350
Offset: 0

Views

Author

Michael Somos, Oct 17 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 - x^7 + 2*x^8 - 2*x^9 + 3*x^10 + ...
G.f. = q^3 - q^11 - q^27 + q^35 - q^43 + q^51 - q^59 + 2*q^67 - 2*q^75 + ...
		

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(10*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^10, x^10], {x, 0, n}]; (* Michael Somos, Sep 06 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^20 + A) / (eta(x^2 + A) * eta(x^10 + A)), n))};

Formula

Expansion of q^(-3/8) * eta(q) * eta(q^20) / (eta(q^2) * eta(q^10)) in powers of q.
Euler transform of period 20 sequence [ -1, 0, -1, 0, -1, 0, -1, 0, -1, 1, -1, 0, -1, 0, -1, 0, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (1280 t)) = f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} (1 - x^(2*k - 1)) / (1 - x^(20*k - 10)).
a(n) = (-1)^n * A145703(n) = A145704(2*n + 1) = - A145705(2*n + 1).
a(n) ~ (-1)^n * exp(Pi*sqrt(n/5)) / (4*5^(1/4)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A261734 Expansion of Product_{k>=1} (1 + x^(4*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 2, -2, 1, -2, 4, -4, 3, -4, 8, -8, 6, -9, 14, -14, 12, -16, 24, -25, 22, -28, 40, -42, 38, -48, 65, -68, 64, -78, 102, -108, 104, -124, 159, -168, 164, -194, 242, -256, 254, -296, 362, -385, 386, -444, 536, -570, 576, -658, 782, -832, 848, -961
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(4*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(4*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(sqrt(n)*Pi/2) / (4*sqrt(2)*n^(3/4)).

A263401 Expansion of Product_{k>=1} (1 + x^k - x^(2*k)).

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 3, 1, 1, 2, 6, 1, 4, 2, 5, 10, 5, 4, 9, 7, 8, 21, 9, 13, 13, 19, 13, 27, 32, 23, 29, 33, 27, 45, 37, 45, 79, 49, 57, 68, 82, 67, 101, 83, 109, 155, 124, 113, 174, 148, 171, 196, 215, 198, 262, 310, 269, 330, 314, 342, 414, 430, 393, 536, 493
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 03 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1+x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[2]] = 1; p[[3]] = -1; Do[Do[p[[j+1]] = p[[j+1]] + p[[j - k + 1]] - If[j < 2*k, 0, p[[j - 2*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ sqrt(log(phi)) * phi^sqrt(8*n) / (2^(3/4)*sqrt(Pi)*n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016

A261736 Expansion of Product_{k>=1} (1 + x^(6*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 2, -2, 2, -3, 3, -3, 5, -5, 5, -7, 8, -8, 11, -12, 12, -16, 17, -18, 23, -25, 26, -32, 35, -37, 45, -49, 52, -62, 67, -72, 85, -92, 98, -114, 124, -133, 153, -166, 178, -203, 220, -236, 268, -290, 311, -350, 379, -407, 456, -493, 529
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(6*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(6*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(sqrt(2*n)*Pi/3) / (2^(7/4)*sqrt(3)*n^(3/4)).

A133563 Expansion of chi(-q) / chi(-q^5) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, 0, 0, -1, 1, -1, 2, -2, 2, -2, 2, -1, 2, -3, 2, -3, 5, -5, 4, -5, 6, -4, 4, -7, 7, -7, 10, -11, 10, -12, 12, -10, 12, -15, 14, -16, 22, -22, 20, -24, 26, -22, 24, -30, 31, -33, 40, -43, 42, -46, 48, -45, 50, -58, 58, -63, 77, -79, 76, -86, 92, -86, 92, -107, 110, -116, 134, -141, 142, -154, 160, -157
Offset: 0

Views

Author

Michael Somos, Sep 16 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015
Denoted by t in Andrews and Berndt 2005. - Michael Somos, Apr 25 2016

Examples

			G.f. = 1 - x - x^3 + x^4 - x^7 + x^8 - x^9 + 2*x^10 - 2*x^11 - 2*x^13 + ...
G.f. = q - q^7 - q^19 + q^25 - q^43 + q^49 - q^55 + 2*q^61 - 2*q^67 + 2*q^73 - ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part I, Springer, New York, 2005, MR2135178 (2005m:11001) See p. 337.

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[  QPochhammer[ x, x^2] / QPochhammer[ x^5, x^10], {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x*O(x^n); polcoeff( eta(x + A) * eta(x^10 + A) / (eta(x^2 + A) * eta(x^5 + A)), n))};

Formula

Expansion of q^(-1/6) * eta(q) * eta(q^10) / ( eta(q^2) * eta(q^5) ) in powers of q.
Euler transform of period 10 sequence [ -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (360 t)) = f(t) where q = exp(2 Pi i t).
Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = v * (u^2 - v) + w^2 * (u^2 + v).
Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(x^q), B(q^9)) where f(u, v, w) = (u^3 + w^3) * (v + v^3) + 2 * v^4 - v^2 + u^3 * w^3 * ( 2 - v^2 ).
Given g.f. A(x) then B(q) = q * A(q^6) satisfies 0 = f(B(q), B(q^2), B(q^5), B(q^10)) where f(u1, u2, u5, u10) = u1^2 * u5^2 + u1^2 * u10^4 + u1 * u2^2 * u5 * u10^2 + u2 * u5^2 * u10^3 + u2^3 * u10^3 - u2^2 * u10^2 - u1^3 * u5^3 - u1^4 * u10^2 - u1^3 * u2^2 * u5 - u1^2 * u2 * u5^2 * u10.
G.f.: Product_{k>0} P10(x^k) where P10 is the 10th cyclotomic polynomial.
G.f.: Product_{k>0} (1 + x^(5*k)) / (1 + x^k).
a(n) ~ (-1)^n * exp(Pi*sqrt(2*n/15)) / (2^(5/4) * 15^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015

A261733 Expansion of Product_{k>=1} (1 + x^(9*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 2, -1, 1, -2, 2, -2, 2, -3, 4, -3, 4, -5, 5, -6, 6, -7, 8, -8, 9, -9, 10, -12, 11, -13, 15, -16, 17, -18, 22, -23, 23, -27, 30, -31, 32, -35, 40, -40, 42, -48, 51, -54, 57, -63, 69, -71, 78, -85, 90, -97, 102, -110, 118, -124, 133
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd.

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A145707 (m=10).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[0, -1, 0,
            -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, -1]
           [1+irem(d, 18)], d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 01 2015
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(9*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/3)/3) / (2 * 3^(3/4) * n^(3/4)).

A261735 Expansion of Product_{k>=1} (1 + x^(8*k))/(1 + x^k).

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, -1, 3, -3, 2, -3, 4, -4, 4, -5, 8, -8, 7, -9, 11, -12, 12, -14, 20, -21, 19, -24, 28, -30, 31, -35, 45, -48, 47, -55, 64, -68, 71, -80, 97, -103, 104, -119, 135, -145, 152, -168, 198, -211, 216, -243, 272, -291, 307, -337, 386, -412
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2015

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd.

Crossrefs

Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(8*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..60); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(8*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (-1)^n * exp(sqrt(5*n/6)*Pi/2) * 5^(1/4) / (2^(11/4)*3^(1/4)*n^(3/4)).

A098884 Number of partitions of n into distinct parts in which each part is congruent to 1 or 5 mod 6.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 3, 3, 2, 1, 1, 3, 5, 5, 3, 1, 2, 5, 7, 7, 5, 3, 3, 7, 11, 11, 7, 4, 6, 11, 15, 15, 11, 7, 8, 15, 22, 22, 15, 10, 13, 22, 30, 30, 23, 16, 18, 30, 42, 42, 31, 22, 27, 43, 56, 56, 44, 33, 37, 57, 77, 77, 59, 45, 53, 79, 101, 101, 82, 64, 71
Offset: 0

Views

Author

Noureddine Chair, Oct 14 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A281244 and A280456. - Vaclav Kotesovec, Jan 18 2017

Examples

			E.g. a(25)=5 because 25=19+5+1=17+7+1=13+7+5=13+11+1.
G.f. = 1 + x + x^5 + x^6 + x^7 + x^8 + x^11 + 2*x^12 + 2*x^13 + x^14 + x^16 + ...
G.f. = q + q^13 + q^61 + q^73 + q^85 + q^97 + q^133 + 2*q^145 + 2*q^157 + q^169 + ...
		

Crossrefs

Programs

  • Haskell
    a098884 = p a007310_list where
       p _  0     = 1
       p (k:ks) m = if k > m then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    series(product((1+x^(6*k-1))*(1+x^(6*k-5)),k=1..100),x=0,100);
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - (-x)^k + x^(2 k), {k, n}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^k + x^(2 k), {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}] / Product[ 1 + x^k, {k, 3, n, 6}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 6}] Product[ 1 + x^k, {k, 5, n, 6}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / QPochhammer[ -x^3, x^6], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2), n))}; /* Michael Somos, Jun 26 2005 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = x * O(x^n); m = sqrtint(3*n + 1); polcoeff( sum(k= -((m-1)\3), (m+1)\3, x^(k * (3*k - 2)), A) / eta(x^6 + A), n))}; /* Michael Somos, Sep 20 2013 */
    

Formula

Expansion of chi(x) / chi(x^3) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Sep 20 2013
Expansion of f(x^1, x^5) / f(-x^6) in powers of x where f(,) is a Ramanujan theta function. - Michael Somos, Sep 20 2013
Expansion of G(x^6) * H(-x) + x * G(-x) * H(x^6) where G() (A003114), H() (A003106) are Rogers-Ramanujan functions.
Expansion of q^(-1/12) * eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ 1, -1, 0, 0, 1, 0, 1, 0, 0, -1, 1, 0, ...]. - Michael Somos, Jun 26 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227398. - Michael Somos, Sep 20 2013
G.f.: Product_{k>0} (1 - (-x)^k + x^(2*k)).
G.f.: 1 / Product_{k>0} (1 - x^(2*k - 1) + x^(4*k - 2)).
G.f.: 1 / Product_{k>0} ((1 + x^(6*k - 3)) / (1 + x^(2*k - 1))).
G.f.: Product_{k>0} ((1 + x^(6*k - 1)) * (1 + x^(6*k - 5))).
G.f.: 1 / Product_{k>0} (1 + (-x)^(3*k - 1)) * (1 + (-x)^(3*k - 2)).
G.f.: (Sum_{k in Z} x^(k * (3*k - 2))) / (Sum_{k in Z} (-1)^k * x^(3*k * (3*k-1))).
A109389(n) = (-1)^n * a(n). Convolution inverse of A227398.
a(n) ~ exp(sqrt(n)*Pi/3)/ (2*sqrt(6)*n^(3/4)) * (1 + (Pi/72 - 9/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 30 2015, extended Jan 18 2017

Extensions

Typo in Maple program fixed by Vaclav Kotesovec, Nov 15 2016

A113297 Expansion of chi(-q) / chi(-q^7) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 0, -1, 1, -1, 1, 0, 1, -2, 1, -1, 2, -2, 3, -3, 3, -4, 4, -4, 5, -4, 4, -6, 6, -7, 7, -8, 11, -11, 10, -12, 14, -15, 15, -14, 17, -20, 19, -21, 24, -26, 30, -31, 32, -37, 38, -40, 45, -44, 47, -54, 56, -60, 64, -68, 79, -83, 83, -92, 100, -105, 110, -112, 123, -136, 138, -147, 160, -170, 185, -194, 203
Offset: 0

Views

Author

Michael Somos, Oct 23 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).
In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			G.f. = 1 - x - x^3 + x^4 - x^5 + x^6 + x^8 - 2*x^9 + x^10 - x^11 + ...
G.f. = q - q^5 - q^13 + q^17 - q^21 + q^25 + q^33 - 2*q^37 + q^41 + ...
		

Crossrefs

Cf. A097793.
Cf. A081360 (m=2), A109389 (m=3), A261734 (m=4), A133563 (m=5), A261736 (m=6), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Maple
    seq(coeff(series(mul((1+x^(7*k))/(1+x^k),k=1..n), x,n+1),x,n),n=0..80); # Muniru A Asiru, Jul 29 2018
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^14] / (QPochhammer[ x^2] QPochhammer[ x^7]), {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x  + A) * eta(x^14 + A) / (eta(x^2 + A) * eta(x^7 + A)), n))};

Formula

Expansion of q^(-1/4) * eta(q) * eta(q^14) / ( eta(q^2) * eta(q^7) ) in powers of q.
Euler transform of period 14 sequence [ -1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, -1, 0, ...].
G.f. A(x) = G(x^7) * H(x^2) - x * G(x^2) * H(x^7) where G(x) and H(x) are the Rogers-Ramanujan functions.
G.f.: Product_{k>0} (1 + x^(7*k)) / (1 + x^k).
Expansion of chi(-q) / chi(-q^7) in powers of q where chi() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (224 t)) = f(t) where q = exp(2 Pi i t).
G.f.: Product_{k>0} P14(x^k) where P14 is the 14th cyclotomic polynomial.
Convolution inverse is A097793.
a(n) ~ (-1)^n * exp(Pi*sqrt(n/7)) / (2^(3/2) * 7^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 31 2015
Showing 1-10 of 19 results. Next