cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A002390 Decimal expansion of natural logarithm of golden ratio.

Original entry on oeis.org

4, 8, 1, 2, 1, 1, 8, 2, 5, 0, 5, 9, 6, 0, 3, 4, 4, 7, 4, 9, 7, 7, 5, 8, 9, 1, 3, 4, 2, 4, 3, 6, 8, 4, 2, 3, 1, 3, 5, 1, 8, 4, 3, 3, 4, 3, 8, 5, 6, 6, 0, 5, 1, 9, 6, 6, 1, 0, 1, 8, 1, 6, 8, 8, 4, 0, 1, 6, 3, 8, 6, 7, 6, 0, 8, 2, 2, 1, 7, 7, 4, 4, 1, 2, 0, 0, 9, 4, 2, 9, 1, 2, 2, 7, 2, 3, 4, 7, 4
Offset: 0

Views

Author

Keywords

Comments

The Baxa article proves that every gamma >= this constant is the Lévy constant of a transcendental number. - Michel Marcus, Apr 09 2016
The entropy of the golden mean shift. See Capobianco link. - Michel Marcus, Jan 19 2019
Also the limiting value of the area of the function y = 1/x bounded by the abscissa of consecutive F(n) points (where F(n)=A000045(n) are the Fibonacci numbers and n > 0). - Burak Muslu, May 09 2021

Examples

			0.481211825059603447497758913424368423135184334385660519661...
		

References

  • George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 236.
  • W. E. Mansell, Tables of Natural and Common Logarithms. Royal Society Mathematical Tables, Vol. 8, Cambridge Univ. Press, 1964, p. XVIII.
  • B. Muslu, Sayılar ve Bağlantılar 2, Luna, 2021, pages 31-38.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

Also equals arcsinh(1/2).
Equals sqrt(5)* A086466 /2. - Seiichi Kirikami, Aug 20 2011
Equals sqrt(5)*(5* A086465 -1)/4. - Jean-François Alcover, Apr 29 2013
Also equals (125*C - 55) / (24*sqrt(5)), where C = Sum_{k>=1} (-1)^(k+1)*1/Cat(k), where Cat(k) = (2k)!/k!/(k+1)! = A000108(k) - k-th Catalan number. See Sep 01 2006 comment at ref. Mathematics in Russian. - Alexander Adamchuk, Dec 27 2013
Equals sqrt(5)/4 * Sum_{n>=0} (-1)^n/((2n+1)*C(2*n,n)) = sqrt(5) *A344041 /4. - Alexander Adamchuk, Dec 27 2013
Equals sqrt((Pi^2/6 - W)/3), where W = Sum_{n>=0} (-1)^n/((2n+1)^2*C(2*n,n)) = A145436, attributed by Alexander Adamchuk to Ramanujan. See Sep 01 2006 comment at ref. Mathematics in Russian. - Alexander Adamchuk, Dec 27 2013
Equals lim_{j->infinity} Sum_{k=F(j)..F(j+1)-1} (1/k), where F = A000045, the Fibonacci sequence. Convergence is slow. For example: Sum_{k=21..33} (1/k) = 0.4910585.... - Richard R. Forberg, Aug 15 2014
Equals Sum_{k>=1} cos(Pi*k/5)/k. - Amiram Eldar, Aug 12 2020
Equals real solution to exp(x)+exp(2*x) = exp(3*x). - Alois P. Heinz, Jul 14 2022
Equals arccoth(sqrt(5)). - Amiram Eldar, Feb 09 2024
Sum_{n >= 1} 1/(n*P(n, sqrt(5))*P(n-1, sqrt(5))), where P(n, x) denotes the n-th Legendre polynomial. The first ten terms of the series gives the approximation log((1 + sqrt(5))/2) = 0.481211825059(39..), correct to 12 decimal places. - Peter Bala, Mar 16 2024
Equals Sum_{n>=0} ((-1)^(n)*binomial(2*n, n))/(2^(4*n + 1)*(2*n + 1)). - Antonio Graciá Llorente, Nov 13 2024

A162891 Expansion of 1 / Product_{k>=1} (1-x^k-x^(2*k)).

Original entry on oeis.org

1, 1, 3, 5, 11, 18, 36, 59, 109, 181, 318, 525, 902, 1481, 2492, 4087, 6788, 11090, 18274, 29776, 48772, 79332, 129411, 210172, 341958, 554728, 900872, 1460298, 2368555, 3837147, 6218652, 10070389, 16311432, 26407350, 42757335, 69208746, 112032256, 181316714
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/(&*[(1-x^k-x^(2*k)): k in [1..100]]))); // G. C. Greubel, Oct 24 2018
  • Maple
    F:= n-> combinat[fibonacci](n+1):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, F(n),
          add((t-> b(t, min(t, i-1)))(n-i*j)*F(j), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..39);  # Alois P. Heinz, Aug 24 2019
  • Mathematica
    nmax = 50; CoefficientList[Series[1/Product[1-x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2016 *)
  • PARI
    al(n)=Vec(1/prod(k=1,n,1-x^k-x^(2*k)+x*O(x^n)))
    

Formula

a(n) ~ p / (sqrt(5) * r^(n+1)), where r = (sqrt(5)-1)/2 and p = Product_{n>1} 1/(1 - r^n - r^(2*n)) = 4.64451592505133910330213147... . - Vaclav Kotesovec, Nov 16 2016

A275820 Expansion of Product_{k>=1} (1 + x^(2*k) + x^(3*k)).

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 3, 1, 3, 3, 3, 2, 7, 3, 8, 7, 10, 7, 16, 8, 17, 17, 21, 17, 35, 22, 37, 36, 46, 37, 69, 46, 74, 71, 91, 81, 128, 96, 144, 139, 173, 154, 236, 185, 263, 257, 314, 286, 417, 345, 470, 462, 557, 517, 719, 617, 815, 802, 960, 904, 1211, 1068
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 15 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+x^(2*k)+x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[3]] = 1; p[[4]] = 1; Do[Do[p[[j+1]] = p[[j+1]] + If[j < 2*k, 0, p[[j - 2*k + 1]]] + If[j < 3*k, 0, p[[j - 3*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + exp(-2*x) + exp(-3*x)) dx = 0.60248650631158778882474716370201988195290074160793967143564...

A293138 E.g.f.: Product_{m>0} (1+x^m+x^(2*m)/2!).

Original entry on oeis.org

1, 1, 3, 12, 72, 480, 3780, 35280, 372960, 4263840, 54432000, 758419200, 11436163200, 185253868800, 3214699488000, 59172265152000, 1163830187520000, 24097823253504000, 525794940582912000, 12073276215576576000, 290883846352619520000, 7318777466097377280000
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2017

Keywords

Examples

			Let's consider the partitions of n where no positive integer appears more than twice. (See A000726)
For n = 5,
    partition      |                         |
--------------------------------------------------------------------
     5             -> one 5                  -> 1/(1!)       (= 1  )
   = 4 + 1         -> one 4 and one 1        -> 1/(1!*1!)    (= 1  )
   = 3 + 2         -> one 3 and one 2        -> 1/(1!*1!)    (= 1  )
   = 3 + 1 + 1     -> one 3 and two 1        -> 1/(1!*2!)    (= 1/2)
   = 2 + 2 + 1     -> two 2 and one 1        -> 1/(2!*1!)    (= 1/2)
--------------------------------------------------------------------
                                                sum             4
So a(5) = 5! * 4 = 480.
For n = 6,
    partition      |                         |
--------------------------------------------------------------------
     6             -> one 6                  -> 1/(1!)       (= 1  )
   = 5 + 1         -> one 5 and one 1        -> 1/(1!*1!)    (= 1  )
   = 4 + 2         -> one 4 and one 2        -> 1/(1!*1!)    (= 1  )
   = 4 + 1 + 1     -> one 4 and two 1        -> 1/(1!*2!)    (= 1/2)
   = 3 + 3         -> two 3                  -> 1/(2!)       (= 1/2)
   = 3 + 2 + 1     -> one 3, one 2 and one 1 -> 1/(1!*1!*1!) (= 1  )
   = 2 + 2 + 1 + 1 -> two 2 and two 1        -> 1/(2!*2!)    (= 1/4)
--------------------------------------------------------------------
                                                sum            21/4
So a(6) = 6! * 21/4 = 3780.
		

Crossrefs

Column k=2 of A293135.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)/j!, j=0..min(2, n/i))))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1]/j!, {j, 0, Min[2, n/i]}]]];
    a[n_] := n! b[n, n];
    a /@ Range[0, 23] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n) - n) * n^(n+1/2) / (sqrt(5) * n^(3/4)), where c = -polylog(2, -1/2 - I/2) - polylog(2, -1/2 + I/2) = 0.9669456127221570300837545... Equivalently, c = -Sum_{k>=1} (-1)^k * cos(Pi*k/4) / (k^2 * 2^(k/2-1)). - Vaclav Kotesovec, Oct 01 2017

A293204 G.f.: Product_{m>0} (1+x^m+2!*x^(2*m)).

Original entry on oeis.org

1, 1, 3, 2, 6, 7, 12, 13, 22, 26, 42, 46, 73, 80, 116, 139, 194, 226, 306, 358, 482, 558, 735, 856, 1108, 1300, 1657, 1926, 2426, 2834, 3530, 4110, 5082, 5898, 7234, 8409, 10216, 11860, 14304, 16568, 19891, 22990, 27470, 31670, 37630, 43382, 51274, 58982, 69450
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2017

Keywords

Examples

			Let's consider the partitions of n where no positive integer appears more than twice. (See A000726)
For n = 5,
    partition      |                         |
--------------------------------------------------------------
     5             -> one 5                  -> 1!       (= 1)
   = 4 + 1         -> one 4 and one 1        -> 1!*1!    (= 1)
   = 3 + 2         -> one 3 and one 2        -> 1!*1!    (= 1)
   = 3 + 1 + 1     -> one 3 and two 1        -> 1!*2!    (= 2)
   = 2 + 2 + 1     -> two 2 and one 1        -> 2!*1!    (= 2)
--------------------------------------------------------------
                                                a(5)      = 7.
For n = 6,
    partition      |                         |
--------------------------------------------------------------
     6             -> one 6                  -> 1!       (= 1)
   = 5 + 1         -> one 5 and one 1        -> 1!*1!    (= 1)
   = 4 + 2         -> one 4 and one 2        -> 1!*1!    (= 1)
   = 4 + 1 + 1     -> one 4 and two 1        -> 1!*2!    (= 2)
   = 3 + 3         -> two 3                  -> 2!       (= 2)
   = 3 + 2 + 1     -> one 3, one 2 and one 1 -> 1!*1!*1! (= 1)
   = 2 + 2 + 1 + 1 -> two 2 and two 1        -> 2!*2!    (= 4)
--------------------------------------------------------------
                                                a(6)      = 12.
		

Crossrefs

Column k=2 of A293202.
Cf. A293072.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*j!, j=0..min(2, n/i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1 + x^k + 2*x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2017 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4 * sqrt(Pi) * n^(3/4)), where c = Pi^2/3 - arctan(sqrt(7))^2 + log(2)^2/4 + polylog(2, -1/4 - I*sqrt(7)/4) + polylog(2, -1/4 + I*sqrt(7)/4) = 1.323865936864425754643630663383779192757247984691212163137... - Vaclav Kotesovec, Oct 02 2017
Equivalently, c = -polylog(2, -1/2 + I*sqrt(7)/2) - polylog(2, -1/2 - I*sqrt(7)/2). - Vaclav Kotesovec, Oct 05 2017

A275821 Expansion of Product_{k>=1} (1 + x^(2*k) - x^(3*k)).

Original entry on oeis.org

1, 0, 1, -1, 1, 0, 1, -1, 1, -1, 3, -2, 3, -3, 2, -1, 4, -3, 4, -4, 7, -7, 7, -7, 9, -6, 11, -10, 10, -11, 15, -14, 18, -19, 21, -17, 24, -22, 26, -29, 35, -34, 42, -43, 43, -39, 52, -52, 59, -59, 74, -72, 79, -87, 93, -87, 107, -108, 118, -126, 149, -146
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 15 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Product[1+x^(2*k)-x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]
    RootReduce[QPochhammer[Root[-1 + # + #^3 &, 1], x] QPochhammer[Root[-1 + # + #^3 &, 2], x] QPochhammer[Root[-1 + # + #^3 &, 3], x] + O[x]^70][[3]] (* Vladimir Reshetnikov, Nov 20 2016 *)
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[3]] = 1; p[[4]] = -1; Do[Do[p[[j + 1]] = p[[j + 1]] + If[j < 2 k, 0, p[[j - 2 k + 1]]] - If[j < 3 k, 0, p[[j - 3 k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 06 2018 *)

Formula

a(n) ~ (-1)^n * c^(1/4) * exp(sqrt(c*n)) / (2^(3/2)*sqrt(Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + 2*exp(-x) + exp(-2*x) - exp(-3*x)) dx = 1.522848148277623680909526566...

A100847 Number of partitions of 2n in which each odd part has even multiplicity and each even part has odd multiplicity.

Original entry on oeis.org

1, 2, 3, 7, 10, 17, 28, 42, 62, 93, 137, 193, 276, 383, 532, 734, 997, 1342, 1807, 2400, 3177, 4190, 5478, 7130, 9245, 11923, 15305, 19591, 24957, 31673, 40075, 50518, 63460, 79523, 99296, 123664, 153616, 190271, 235072, 289776, 356302, 437107, 535112, 653626
Offset: 0

Views

Author

Vladeta Jovovic, Aug 16 2007

Keywords

Examples

			a(3) = 7 because we have 6, 42, 411, 33, 222, 21111 and 111111.
		

Crossrefs

Programs

  • Maple
    g:=product((1+x^i-x^(2*i))/(1-x^i),i=1..50): gser:=series(g,x=0,40): seq(coeff(gser,x,n),n=0..35); # Emeric Deutsch, Aug 25 2007
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(irem(i+j, 2)=0, 0, b(n-i*j, i-1)), j=1..n/i)
           +b(n, i-1)))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 31 2014
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k-x^(2*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)

Formula

G.f.: Product_{i>0} (1+x^i-x^(2*i))/(1-x^i).
a(n) ~ sqrt(Pi^2/3 + 4*log(phi)^2) * exp(sqrt((2*Pi^2/3 + 8*log(phi)^2)*n)) / (4*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016

Extensions

More terms from Emeric Deutsch, Aug 25 2007

A276527 Expansion of Product_{k>=1} 1 / (1 + x^k - x^(2*k)).

Original entry on oeis.org

1, -1, 1, -3, 5, -8, 12, -21, 37, -59, 92, -153, 256, -409, 654, -1073, 1754, -2824, 4552, -7394, 12010, -19406, 31337, -50782, 82306, -133072, 215152, -348346, 563939, -912217, 1475604, -2388075, 3864808, -6252750, 10115987, -16369340, 26488326, -42857128
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Product[1+x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ -p / (sqrt(5) * r^(n+1)), where r = -(sqrt(5)-1)/2 and p = Product_{n>1} 1/(1 + r^n - r^(2*n)) = 1.0964214808924344474065093...

A293182 Expansion of Product_{k>=1} (1 + 2*x^k - x^(2*k)).

Original entry on oeis.org

1, 2, 1, 6, 3, 6, 16, 12, 16, 22, 51, 36, 60, 62, 91, 154, 148, 176, 236, 278, 328, 552, 508, 670, 771, 988, 1068, 1438, 1844, 1998, 2401, 2882, 3300, 4030, 4640, 5406, 7212, 7584, 9072, 10480, 12612, 13964, 17024, 18860, 22545, 27298, 30340, 34372, 41068
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 01 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 100:
    P:= mul(1+2*x^m- x^(2*m), m=1..N):
    S:= series(P,x,N+1):
    seq(coeff(S,x,n), n=0..N); # Robert Israel, Oct 01 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+2*x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2^(3/2) * sqrt(Pi) * n^(3/4)), where c = Pi^2/6 + log(1+sqrt(2))^2/2 + polylog(2, 3-2*sqrt(2))/2 - 2*polylog(2, sqrt(2)-1) = 1.18805291660775259061867850175092520191179528961165451864292...

A293253 Expansion of Product_{k>=1} (1 + x^k + x^(k^2)).

Original entry on oeis.org

1, 2, 1, 3, 4, 6, 6, 8, 12, 15, 20, 22, 30, 35, 46, 53, 67, 80, 97, 117, 138, 165, 195, 231, 272, 323, 378, 442, 514, 600, 696, 806, 931, 1078, 1240, 1431, 1638, 1881, 2147, 2461, 2802, 3197, 3632, 4131, 4685, 5310, 6009, 6790, 7670, 8652, 9749, 10968, 12336
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 04 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+x^k+x^(k^2)), {k, 1, nmax}], {x, 0, nmax}], x]
Showing 1-10 of 12 results. Next