cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A162891 Expansion of 1 / Product_{k>=1} (1-x^k-x^(2*k)).

Original entry on oeis.org

1, 1, 3, 5, 11, 18, 36, 59, 109, 181, 318, 525, 902, 1481, 2492, 4087, 6788, 11090, 18274, 29776, 48772, 79332, 129411, 210172, 341958, 554728, 900872, 1460298, 2368555, 3837147, 6218652, 10070389, 16311432, 26407350, 42757335, 69208746, 112032256, 181316714
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/(&*[(1-x^k-x^(2*k)): k in [1..100]]))); // G. C. Greubel, Oct 24 2018
  • Maple
    F:= n-> combinat[fibonacci](n+1):
    b:= proc(n, i) option remember; `if`(n=0 or i=1, F(n),
          add((t-> b(t, min(t, i-1)))(n-i*j)*F(j), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..39);  # Alois P. Heinz, Aug 24 2019
  • Mathematica
    nmax = 50; CoefficientList[Series[1/Product[1-x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 16 2016 *)
  • PARI
    al(n)=Vec(1/prod(k=1,n,1-x^k-x^(2*k)+x*O(x^n)))
    

Formula

a(n) ~ p / (sqrt(5) * r^(n+1)), where r = (sqrt(5)-1)/2 and p = Product_{n>1} 1/(1 - r^n - r^(2*n)) = 4.64451592505133910330213147... . - Vaclav Kotesovec, Nov 16 2016

A293182 Expansion of Product_{k>=1} (1 + 2*x^k - x^(2*k)).

Original entry on oeis.org

1, 2, 1, 6, 3, 6, 16, 12, 16, 22, 51, 36, 60, 62, 91, 154, 148, 176, 236, 278, 328, 552, 508, 670, 771, 988, 1068, 1438, 1844, 1998, 2401, 2882, 3300, 4030, 4640, 5406, 7212, 7584, 9072, 10480, 12612, 13964, 17024, 18860, 22545, 27298, 30340, 34372, 41068
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 01 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 100:
    P:= mul(1+2*x^m- x^(2*m), m=1..N):
    S:= series(P,x,N+1):
    seq(coeff(S,x,n), n=0..N); # Robert Israel, Oct 01 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+2*x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2^(3/2) * sqrt(Pi) * n^(3/4)), where c = Pi^2/6 + log(1+sqrt(2))^2/2 + polylog(2, 3-2*sqrt(2))/2 - 2*polylog(2, sqrt(2)-1) = 1.18805291660775259061867850175092520191179528961165451864292...
Showing 1-2 of 2 results.