cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A263401 Expansion of Product_{k>=1} (1 + x^k - x^(2*k)).

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 3, 1, 1, 2, 6, 1, 4, 2, 5, 10, 5, 4, 9, 7, 8, 21, 9, 13, 13, 19, 13, 27, 32, 23, 29, 33, 27, 45, 37, 45, 79, 49, 57, 68, 82, 67, 101, 83, 109, 155, 124, 113, 174, 148, 171, 196, 215, 198, 262, 310, 269, 330, 314, 342, 414, 430, 393, 536, 493
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 03 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1+x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[2]] = 1; p[[3]] = -1; Do[Do[p[[j+1]] = p[[j+1]] + p[[j - k + 1]] - If[j < 2*k, 0, p[[j - 2*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ sqrt(log(phi)) * phi^sqrt(8*n) / (2^(3/4)*sqrt(Pi)*n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016

A293138 E.g.f.: Product_{m>0} (1+x^m+x^(2*m)/2!).

Original entry on oeis.org

1, 1, 3, 12, 72, 480, 3780, 35280, 372960, 4263840, 54432000, 758419200, 11436163200, 185253868800, 3214699488000, 59172265152000, 1163830187520000, 24097823253504000, 525794940582912000, 12073276215576576000, 290883846352619520000, 7318777466097377280000
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2017

Keywords

Examples

			Let's consider the partitions of n where no positive integer appears more than twice. (See A000726)
For n = 5,
    partition      |                         |
--------------------------------------------------------------------
     5             -> one 5                  -> 1/(1!)       (= 1  )
   = 4 + 1         -> one 4 and one 1        -> 1/(1!*1!)    (= 1  )
   = 3 + 2         -> one 3 and one 2        -> 1/(1!*1!)    (= 1  )
   = 3 + 1 + 1     -> one 3 and two 1        -> 1/(1!*2!)    (= 1/2)
   = 2 + 2 + 1     -> two 2 and one 1        -> 1/(2!*1!)    (= 1/2)
--------------------------------------------------------------------
                                                sum             4
So a(5) = 5! * 4 = 480.
For n = 6,
    partition      |                         |
--------------------------------------------------------------------
     6             -> one 6                  -> 1/(1!)       (= 1  )
   = 5 + 1         -> one 5 and one 1        -> 1/(1!*1!)    (= 1  )
   = 4 + 2         -> one 4 and one 2        -> 1/(1!*1!)    (= 1  )
   = 4 + 1 + 1     -> one 4 and two 1        -> 1/(1!*2!)    (= 1/2)
   = 3 + 3         -> two 3                  -> 1/(2!)       (= 1/2)
   = 3 + 2 + 1     -> one 3, one 2 and one 1 -> 1/(1!*1!*1!) (= 1  )
   = 2 + 2 + 1 + 1 -> two 2 and two 1        -> 1/(2!*2!)    (= 1/4)
--------------------------------------------------------------------
                                                sum            21/4
So a(6) = 6! * 21/4 = 3780.
		

Crossrefs

Column k=2 of A293135.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)/j!, j=0..min(2, n/i))))
        end:
    a:= n-> n!*b(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1]/j!, {j, 0, Min[2, n/i]}]]];
    a[n_] := n! b[n, n];
    a /@ Range[0, 23] (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n) - n) * n^(n+1/2) / (sqrt(5) * n^(3/4)), where c = -polylog(2, -1/2 - I/2) - polylog(2, -1/2 + I/2) = 0.9669456127221570300837545... Equivalently, c = -Sum_{k>=1} (-1)^k * cos(Pi*k/4) / (k^2 * 2^(k/2-1)). - Vaclav Kotesovec, Oct 01 2017

A329156 Expansion of Product_{k>=1} 1 / (1 - Sum_{j>=1} j * x^(k*j)).

Original entry on oeis.org

1, 1, 4, 10, 29, 72, 200, 510, 1364, 3546, 9348, 24400, 64090, 167562, 439200, 1149360, 3010349, 7879832, 20633304, 54014950, 141422328, 370239300, 969323000, 2537696160, 6643839400, 17393731933, 45537549048, 119218684970, 312119004990, 817137724392, 2139295489200, 5600747143950
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2019

Keywords

Comments

Euler transform of A032198.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
          add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          -add(a(j)*b(n-j$2), j=0..n-1))
        end:
    seq(a(n), n=0..31);  # Alois P. Heinz, Jul 25 2025
  • Mathematica
    nmax = 31; CoefficientList[Series[Product[1/(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 31; CoefficientList[Series[Product[1/(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1 / (1 - x^k / (1 - x^k)^2).
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} 1 / (d * (1 - x^(k/d))^(2*d)) ) * x^k).
G.f.: Product_{k>=1} 1 / (1 - x^k)^A032198(k).
G.f.: A(x) = Product_{k>=1} B(x^k), where B(x) = g.f. of A088305.
a(n) ~ phi^(2*n-1), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 07 2019
a(2^k) = A002878(2^k-1) for all nonnegative integers k. Follows from Cor. 4.5 on page 11 of Kassel-Reutenauer paper. - Michael De Vlieger, Jul 28 2025

A276527 Expansion of Product_{k>=1} 1 / (1 + x^k - x^(2*k)).

Original entry on oeis.org

1, -1, 1, -3, 5, -8, 12, -21, 37, -59, 92, -153, 256, -409, 654, -1073, 1754, -2824, 4552, -7394, 12010, -19406, 31337, -50782, 82306, -133072, 215152, -348346, 563939, -912217, 1475604, -2388075, 3864808, -6252750, 10115987, -16369340, 26488326, -42857128
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 16 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1/Product[1+x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ -p / (sqrt(5) * r^(n+1)), where r = -(sqrt(5)-1)/2 and p = Product_{n>1} 1/(1 + r^n - r^(2*n)) = 1.0964214808924344474065093...

A293182 Expansion of Product_{k>=1} (1 + 2*x^k - x^(2*k)).

Original entry on oeis.org

1, 2, 1, 6, 3, 6, 16, 12, 16, 22, 51, 36, 60, 62, 91, 154, 148, 176, 236, 278, 328, 552, 508, 670, 771, 988, 1068, 1438, 1844, 1998, 2401, 2882, 3300, 4030, 4640, 5406, 7212, 7584, 9072, 10480, 12612, 13964, 17024, 18860, 22545, 27298, 30340, 34372, 41068
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 01 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 100:
    P:= mul(1+2*x^m- x^(2*m), m=1..N):
    S:= series(P,x,N+1):
    seq(coeff(S,x,n), n=0..N); # Robert Israel, Oct 01 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+2*x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2^(3/2) * sqrt(Pi) * n^(3/4)), where c = Pi^2/6 + log(1+sqrt(2))^2/2 + polylog(2, 3-2*sqrt(2))/2 - 2*polylog(2, sqrt(2)-1) = 1.18805291660775259061867850175092520191179528961165451864292...

A309950 G.f.: Product_{j>=1} (1 + p(x^j)), where p(x) is the g.f. of A000040.

Original entry on oeis.org

1, 2, 5, 11, 22, 43, 78, 140, 238, 405, 665, 1077, 1710, 2685, 4140, 6336, 9551, 14280, 21117, 30994, 45051, 65046, 93170, 132600, 187439, 263449, 367999, 511409, 706833, 972257, 1330929, 1813846, 2461090, 3325803, 4476276, 6002036, 8018216, 10674307, 14161656
Offset: 0

Views

Author

Alois P. Heinz, Aug 24 2019

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, ithprime(n),
          add(b(j, 1)*(t-> b(t, min(t, i-1)))(n-i*j), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i==1,
       Prime[n], Sum[b[j, 1]*Function[t,
       b[t, Min[t, i-1]]][n-i*j], {j, 0, n/i}]]];
    a[n_] := b[n, n];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Sep 15 2022, after Alois P. Heinz *)

A319668 Expansion of Product_{k>=1} (1 - x^k - x^(2*k)).

Original entry on oeis.org

1, -1, -2, 0, 0, 3, 1, 3, 1, -2, 0, -3, -6, -4, 1, -8, 1, 2, 5, 5, 4, 9, 13, 7, 3, 1, 3, 7, -16, -9, -17, -13, -21, -5, -25, -33, -3, -3, -9, 22, -6, 11, 29, 29, 57, 37, 40, 31, 58, 18, 35, 40, 37, -24, -36, -34, -29, -60, -54, -98, -74, -124, -113, -156, -71, -35, -140, -46, -16, -61, -25
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(mul((1-x^k-x^(2*k)),k=1..100),x=0,71): seq(coeff(a,x,n),n=0..70); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 70; CoefficientList[Series[Product[(1 - x^k - x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 70; CoefficientList[Series[Exp[Sum[Sum[EulerPhi[j] Log[1 - x^(j k) (1 + x^(j k))]/(j k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, -Sum[Sum[Sum[EulerPhi[d/j] (Fibonacci[j - 1] + Fibonacci[j + 1]), {j, Divisors[d]}], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 70}]

Formula

G.f.: exp(Sum_{k>=1} Sum_{j>=1} phi(j)*log(1 - x^(j*k)*(1 + x^(j*k)))/(j*k)), where phi = Euler totient function (A000010).

A309733 Expansion of Product_{k>=1} 1/(1 - x^k/(1 - x^(2*k))).

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 22, 36, 62, 104, 174, 286, 478, 780, 1284, 2100, 3433, 5586, 9114, 14798, 24064, 39050, 63376, 102726, 166584, 269835, 437190, 707964, 1146480, 1855966, 3004748, 4863306, 7871798, 12739576, 20617652, 33364524, 53992834, 87369548, 141379728, 228769842
Offset: 0

Views

Author

Seiichi Manyama, Sep 22 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1 - x^k/(1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 22 2019 *)
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, 1-x^k/(1-x^(2*k))))

Formula

a(n) ~ phi^(n+1), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 22 2019

A320286 Expansion of Product_{k>=1} 1/(1 - x^k - x^(2*k) - x^(3*k)).

Original entry on oeis.org

1, 1, 3, 6, 13, 24, 51, 93, 184, 343, 654, 1211, 2286, 4217, 7865, 14521, 26912, 49600, 91669, 168800, 311305, 573058, 1055576, 1942437, 3575840, 6578762, 12106121, 22270404, 40972700, 75367724, 138644224, 255020102, 469095029, 862827347, 1587061299, 2919111935, 5369224903
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 09 2018

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1/( &*[(1-x^k-x^(2*k)-x^(3*k)): k in [1..m+2]]))); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series(mul(((1-x^k-x^(2*k)-x^(3*k)))^(-1),k=1..n),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    nmax = 36; CoefficientList[Series[Product[1/(1 - x^k - x^(2 k) - x^(3 k)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 36; CoefficientList[Series[Exp[-Sum[Sum[EulerPhi[j] Log[1 - x^(j k) (1 + x^(j k) + x^(2 j k))]/(j k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x]
  • PARI
    m=40; x='x+O('x^m); Vec(1/prod(k=1, m+2, (1-x^k-x^(2*k)-x^(3*k)))) \\ G. C. Greubel, Oct 24 2018
    

Formula

G.f.: exp(-Sum_{k>=1} Sum_{j>=1} phi(j)*log(1 - x^(j*k)*(1 + x^(j*k) + x^(2*j*k)))/(j*k)), where phi = Euler totient function (A000010).
From Vaclav Kotesovec, Oct 09 2018: (Start)
a(n) ~ s*p / r^(n+1), where
r = A192918 = ((17 + 3*sqrt(33))^(1/3) - 2/(17 + 3*sqrt(33))^(1/3) - 1)/3 = 0.54368901269207636157085597180174798652520329765098393524... is the real root of the equation 1 - r - r^2 - r^3 = 0,
s = (51 + 9*sqrt(33))/(4*(17 + 3*sqrt(33))^(1/3) + (17 + 3*sqrt(33))^(5/3) - 34 - 6*sqrt(33)) = 0.3362281169949410942253629540143324151579260900204592... is the real root of the equation -1 - 2*s + 44*s^3 = 0,
p = Product_{k>=2} 1/(1 - r^k - r^(2*k) - r^(3*k)) = 2.577933056783997593784130068093034525002002622982961271582417329674...
(End)
Showing 1-9 of 9 results.