cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A329157 Expansion of Product_{k>=1} (1 - Sum_{j>=1} j * x^(k*j)).

Original entry on oeis.org

1, -1, -3, -3, -4, 3, 2, 19, 21, 32, 40, 45, 16, 8, -18, -125, -164, -291, -358, -530, -588, -724, -592, -675, -358, -207, 570, 1201, 2208, 3333, 4944, 6490, 8277, 10492, 11800, 13260, 14328, 14722, 12942, 12075, 5640, 603, -10444, -21120, -39360, -55876, -83488
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2019

Keywords

Comments

Convolution inverse of A329156.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>1, b(n, i-1), 0)-
          add(b(n-i*j, min(n-i*j, i-1))*j, j=`if`(i=1, n, 1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..46);  # Alois P. Heinz, Jul 18 2025
  • Mathematica
    nmax = 46; CoefficientList[Series[Product[(1 - Sum[j x^(k j), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 46; CoefficientList[Series[Product[(1 - x^k/(1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^k / (1 - x^k)^2).
G.f.: exp(-Sum_{k>=1} ( Sum_{d|k} 1 / (d * (1 - x^(k/d))^(2*d)) ) * x^k).
G.f.: Product_{k>=1} (1 - x^k)^A032198(k).
G.f.: A(x) = Product_{k>=1} 1 / B(x^k), where B(x) = g.f. of A088305.
a(n) = Sum_{k=0..A003056(n)} (-1)^k * A385001(n,k). - Alois P. Heinz, Jul 18 2025

A386706 Expansion of ((Product_{k>=1} (1 - x^k)^2/(1 - 4*x^k + x^(2k))) - 1)/2.

Original entry on oeis.org

0, 1, 5, 18, 71, 260, 990, 3672, 13775, 51343, 191860, 715770, 2672298, 9972092, 37220040, 138903480, 518408351, 1934712530, 7220497115, 26947209762, 100568547820, 375326739216, 1400739172470, 5227629044040, 19509779871450, 72811487038701, 271736178975820, 1014133216234068
Offset: 0

Views

Author

Christian Kassel, Jul 30 2025

Keywords

Comments

a(n) is the value at q = 2 + sqrt(3) of C_n(q)/(q^{n-1}(q - 1)^2), where C_n(q) is the number of codimension n ideals of the algebra of two-variable Laurent polynomials over a finite field of order q. The number C_n(q) is a palindromic polynomial of degree 2n with integer coefficients in the variable q and it is divisible by (q-1)^2.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[(Product[(1 - x^k)^2/(1 - 4*x^k + x^(2*k)), {k, 1, nmax}] - 1)/2, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 30 2025 *)

Formula

G.f.: ((Product_{k>=1} (1 - x^k)^2/(1 - 4*x^k + x^(2k))) - 1)/2.
a(2^k) = A001834(2^k-1) for all nonnegative integers k. Follows from Cor. 4.5 of Kassel-Reutenauer paper "Pairs of intertwined integer sequences".
a(n) ~ (1 + sqrt(3))^(2*n-1) / 2^n. - Vaclav Kotesovec, Jul 30 2025

Extensions

a(0)=0 added, offset changed to 0, a(7) corrected and more terms added by Vaclav Kotesovec, Jul 30 2025

A387017 Expansion of (Product_{k>=1} (1 - x^k)^2/(1 - 5*x^k + x^(2*k)) - 1)/3.

Original entry on oeis.org

1, 6, 28, 139, 660, 3192, 15260, 73254, 350848, 1681650, 8056608, 38604748, 184963130, 886226880, 4246152960, 20344613659, 97476826932, 467039887908, 2237722185188, 10721572793580, 51370139753240, 246129134364792, 1179275522335680, 5650248517615128
Offset: 1

Views

Author

Christian Kassel, Aug 13 2025

Keywords

Comments

a(n) is the value at q = (5 + sqrt(21))/2 of C_n(q)/(q^{n-1}(q - 1)^2), where C_n(q) is the number of codimension n ideals of the algebra of two-variable Laurent polynomials over a finite field of order q. The number C_n(q) is a palindromic polynomial of degree 2n with integer coefficients in the variable q and it is divisible by (q-1)^2.

Crossrefs

Programs

  • Mathematica
    nmax = 25; Rest[CoefficientList[Series[(Product[(1 - x^k)^2/(1 - 5*x^k + x^(2*k)), {k, 1, nmax}] - 1)/3, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 14 2025 *)

Formula

G.f.: (Product_{k>=1} (1 - x^k)^2/(1 - 5*x^k + x^(2*k)) - 1)/3
a(2^k) = A030221(2^k-1). (Follows from Cor. 4.5 of Kassel and Reutenauer (2025).)
a(n) ~ (3 + sqrt(21))^(2*n-1) / (2^(2*n-1) * 3^n). - Vaclav Kotesovec, Aug 14 2025

A329163 Expansion of Product_{k>=1} 1 / (1 - Sum_{j>=1} j * x^(j*(2*k - 1))).

Original entry on oeis.org

1, 1, 3, 9, 22, 59, 156, 405, 1061, 2786, 7284, 19071, 49948, 130738, 342288, 896175, 2346134, 6142287, 16080852, 42100020, 110219366, 288558380, 755455128, 1977807393, 5177967900, 13556094631, 35490316938, 92914858431, 243254253904, 636847905903, 1667289469704, 4365020491362
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 06 2019

Keywords

Comments

Weigh transform of A032198.

Crossrefs

Programs

  • Mathematica
    nmax = 31; CoefficientList[Series[Product[1/(1 - Sum[j x^(j (2 k - 1)), {j, 1, nmax}]), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 31; CoefficientList[Series[Product[1/(1 - x^(2 k - 1)/(1 - x^(2 k - 1))^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1 / (1 - x^(2*k - 1) / (1 - x^(2*k - 1))^2).
G.f.: Product_{k>=1} (1 + x^k)^A032198(k).
a(n) ~ c * phi^(2*n) / sqrt(5), where c = Product_{k>=2} 1/(1 - phi^(2 - 4*k)/(phi^(2 - 4*k) - 1)^2) = 1.07705428718361459418304978675229012... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Nov 07 2019
Showing 1-4 of 4 results.