cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A293135 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. Product_{i>0} Sum_{j=0..k} x^(j*i)/j!.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 3, 12, 0, 1, 1, 3, 12, 48, 0, 1, 1, 3, 13, 72, 360, 0, 1, 1, 3, 13, 72, 480, 2880, 0, 1, 1, 3, 13, 73, 500, 3780, 25200, 0, 1, 1, 3, 13, 73, 500, 4020, 35280, 241920, 0, 1, 1, 3, 13, 73, 501, 4050, 37380, 372960, 2903040, 0
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2017

Keywords

Examples

			Square array begins:
   1,   1,   1,   1,   1, ...
   0,   1,   1,   1,   1, ...
   0,   2,   3,   3,   3, ...
   0,  12,  12,  13,  13, ...
   0,  48,  72,  72,  73, ...
   0, 360, 480, 500, 500, ...
		

Crossrefs

Columns k=0..5 give A000007, A088311, A293138, A293195, A293196, A293197.
Rows n=0 gives A000012.
Main diagonal gives A000262.
Cf. A293139.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))
        end:
    A:= (n, k)-> n!*b(n$2, k):
    seq(seq(A(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i j, i - 1, k]/j!, {j, 0, Min[k, n/i]}]]];
    A[n_, k_] := n! b[n, n, k];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 06 2019, after Alois P. Heinz *)

A293204 G.f.: Product_{m>0} (1+x^m+2!*x^(2*m)).

Original entry on oeis.org

1, 1, 3, 2, 6, 7, 12, 13, 22, 26, 42, 46, 73, 80, 116, 139, 194, 226, 306, 358, 482, 558, 735, 856, 1108, 1300, 1657, 1926, 2426, 2834, 3530, 4110, 5082, 5898, 7234, 8409, 10216, 11860, 14304, 16568, 19891, 22990, 27470, 31670, 37630, 43382, 51274, 58982, 69450
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2017

Keywords

Examples

			Let's consider the partitions of n where no positive integer appears more than twice. (See A000726)
For n = 5,
    partition      |                         |
--------------------------------------------------------------
     5             -> one 5                  -> 1!       (= 1)
   = 4 + 1         -> one 4 and one 1        -> 1!*1!    (= 1)
   = 3 + 2         -> one 3 and one 2        -> 1!*1!    (= 1)
   = 3 + 1 + 1     -> one 3 and two 1        -> 1!*2!    (= 2)
   = 2 + 2 + 1     -> two 2 and one 1        -> 2!*1!    (= 2)
--------------------------------------------------------------
                                                a(5)      = 7.
For n = 6,
    partition      |                         |
--------------------------------------------------------------
     6             -> one 6                  -> 1!       (= 1)
   = 5 + 1         -> one 5 and one 1        -> 1!*1!    (= 1)
   = 4 + 2         -> one 4 and one 2        -> 1!*1!    (= 1)
   = 4 + 1 + 1     -> one 4 and two 1        -> 1!*2!    (= 2)
   = 3 + 3         -> two 3                  -> 2!       (= 2)
   = 3 + 2 + 1     -> one 3, one 2 and one 1 -> 1!*1!*1! (= 1)
   = 2 + 2 + 1 + 1 -> two 2 and two 1        -> 2!*2!    (= 4)
--------------------------------------------------------------
                                                a(6)      = 12.
		

Crossrefs

Column k=2 of A293202.
Cf. A293072.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)*j!, j=0..min(2, n/i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Oct 02 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1 + x^k + 2*x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2017 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4 * sqrt(Pi) * n^(3/4)), where c = Pi^2/3 - arctan(sqrt(7))^2 + log(2)^2/4 + polylog(2, -1/4 - I*sqrt(7)/4) + polylog(2, -1/4 + I*sqrt(7)/4) = 1.323865936864425754643630663383779192757247984691212163137... - Vaclav Kotesovec, Oct 02 2017
Equivalently, c = -polylog(2, -1/2 + I*sqrt(7)/2) - polylog(2, -1/2 - I*sqrt(7)/2). - Vaclav Kotesovec, Oct 05 2017

A293141 E.g.f.: Product_{m>0} (1 - x^m + x^(2m)/2).

Original entry on oeis.org

1, -1, -1, 0, 0, 0, 180, 0, 10080, 90720, 0, 0, 179625600, -1556755200, -10897286400, 326918592000, -2615348736000, -88921857024000, 800296713216000, -30411275102208000, 152056375511040000, 0, -351250227430502400000, -3231502092360622080000
Offset: 0

Views

Author

Seiichi Manyama, Oct 01 2017

Keywords

Crossrefs

Column k=2 of A293139.
Cf. A293138.

Programs

  • Maple
    N:= 30: # to get a(0)..a(N)
    P:= mul(1-x^m+x^(2*m)/2, m=1..N):
    seq(coeff(P,x,n)*n!, n=0..N); # Robert Israel, Oct 01 2017

A293182 Expansion of Product_{k>=1} (1 + 2*x^k - x^(2*k)).

Original entry on oeis.org

1, 2, 1, 6, 3, 6, 16, 12, 16, 22, 51, 36, 60, 62, 91, 154, 148, 176, 236, 278, 328, 552, 508, 670, 771, 988, 1068, 1438, 1844, 1998, 2401, 2882, 3300, 4030, 4640, 5406, 7212, 7584, 9072, 10480, 12612, 13964, 17024, 18860, 22545, 27298, 30340, 34372, 41068
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 01 2017

Keywords

Crossrefs

Programs

  • Maple
    N:= 100:
    P:= mul(1+2*x^m- x^(2*m), m=1..N):
    S:= series(P,x,N+1):
    seq(coeff(S,x,n), n=0..N); # Robert Israel, Oct 01 2017
  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+2*x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2^(3/2) * sqrt(Pi) * n^(3/4)), where c = Pi^2/6 + log(1+sqrt(2))^2/2 + polylog(2, 3-2*sqrt(2))/2 - 2*polylog(2, sqrt(2)-1) = 1.18805291660775259061867850175092520191179528961165451864292...

A293488 E.g.f.: Product_{m>0} (1 + x^(2*m-1) + x^(4*m-2)/2!).

Original entry on oeis.org

1, 1, 1, 6, 24, 180, 1080, 10080, 90720, 907200, 10886400, 139708800, 2035756800, 29578348800, 479480601600, 7846046208000, 146459529216000, 2845499424768000, 58421660064768000, 1246862279190528000, 28586598596075520000, 664182248232222720000
Offset: 0

Views

Author

Seiichi Manyama, Oct 10 2017

Keywords

Crossrefs

Column k=2 of A293486.

Programs

  • PARI
    N=66; x='x+O('x^N); Vec(serlaplace(prod(m=1, N, 1+x^(2*m-1)+x^(4*m-2)/2)))

Formula

a(n) ~ 2^(-3/4) * c^(1/4) * exp(sqrt(2*c*n) - n) * n^(n-1/4), where c = -polylog(2, -1/2 - I/2) - polylog(2, -1/2 + I/2) = 0.966945612722157030083754546059357521... - Vaclav Kotesovec, Oct 11 2017
Showing 1-5 of 5 results.