cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A263401 Expansion of Product_{k>=1} (1 + x^k - x^(2*k)).

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 3, 1, 1, 2, 6, 1, 4, 2, 5, 10, 5, 4, 9, 7, 8, 21, 9, 13, 13, 19, 13, 27, 32, 23, 29, 33, 27, 45, 37, 45, 79, 49, 57, 68, 82, 67, 101, 83, 109, 155, 124, 113, 174, 148, 171, 196, 215, 198, 262, 310, 269, 330, 314, 342, 414, 430, 393, 536, 493
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 03 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 80; CoefficientList[Series[Product[1+x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[2]] = 1; p[[3]] = -1; Do[Do[p[[j+1]] = p[[j+1]] + p[[j - k + 1]] - If[j < 2*k, 0, p[[j - 2*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ sqrt(log(phi)) * phi^sqrt(8*n) / (2^(3/4)*sqrt(Pi)*n^(3/4)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016

A102247 Number of partitions of n in which each odd part has odd multiplicity and each even part has even multiplicity.

Original entry on oeis.org

1, 1, 0, 2, 2, 3, 2, 4, 7, 8, 8, 10, 17, 17, 20, 26, 39, 39, 46, 56, 77, 85, 96, 116, 154, 172, 190, 234, 289, 328, 364, 440, 532, 610, 670, 808, 957, 1091, 1204, 1432, 1675, 1905, 2110, 2476, 2867, 3255, 3608, 4184, 4837, 5451, 6050, 6960, 7980, 8961, 9972, 11370
Offset: 0

Views

Author

Vladeta Jovovic, Aug 16 2007

Keywords

Examples

			a(7) = 4 because we have 7, 322, 22111 and 1111111.
		

Crossrefs

Programs

  • Maple
    g:=product((1+x^(2*i-1)-x^(4*i-2))/(1-x^(2*i)),i=1..40): gser:=series(g,x=0, 60): seq(coeff(gser,x,n),n=0..55); # Emeric Deutsch, Aug 23 2007
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(irem(i+j, 2)=0, b(n-i*j, i-1), 0), j=1..n/i)
           +b(n, i-1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 31 2014
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k-1) - x^(4*k-2))/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 03 2016 *)

Formula

G.f.: Product_{i>0} (1+x^(2*i-1)-x^(4*i-2))/(1-x^(2*i)).
a(n) ~ sqrt(Pi^2/3 + 4*log(phi)^2) * exp(sqrt((Pi^2/3 + 4*log(phi)^2)*n)) / (4*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jan 03 2016

Extensions

More terms from Emeric Deutsch, Aug 23 2007
Showing 1-2 of 2 results.