cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A109389 Expansion of q^(-1/12)eta(q)eta(q^6)/(eta(q^2)eta(q^3)) in powers of q.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 2, -2, 1, 0, 1, -2, 3, -3, 2, -1, 1, -3, 5, -5, 3, -1, 2, -5, 7, -7, 5, -3, 3, -7, 11, -11, 7, -4, 6, -11, 15, -15, 11, -7, 8, -15, 22, -22, 15, -10, 13, -22, 30, -30, 23, -16, 18, -30, 42, -42, 31, -22, 27, -43, 56, -56, 44, -33, 37, -57, 77, -77, 59, -45, 53, -79, 101, -101, 82, -64
Offset: 0

Views

Author

Michael Somos, Jun 26 2005

Keywords

Comments

In general, if m > 1 and g.f. = Product_{k>=1} (1 + x^(m*k))/(1 + x^k), then a(n) ~ (-1)^n * exp(Pi*sqrt((m+2)*n/(6*m))) * (m+2)^(1/4) / (4 * (6*m)^(1/4) * n^(3/4)) if m is even and a(n) ~ (-1)^n * exp(Pi*sqrt((m-1)*n/(6*m))) * (m-1)^(1/4) / (2^(3/2) * (6*m)^(1/4) * n^(3/4)) if m is odd. - Vaclav Kotesovec, Aug 31 2015

Examples

			q - q^13 - q^61 + q^73 - q^85 + q^97 - q^133 + 2*q^145 - 2*q^157 + q^169 + ...
		

Crossrefs

Cf. A098884.
Cf. A081360 (m=2), A261734 (m=4), A133563 (m=5), A261736 (m=6), A113297 (m=7), A261735 (m=8), A261733 (m=9), A145707 (m=10).

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1 + x^(3*k))/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 30 2015 *)
    QP = QPochhammer; s = QP[q]*(QP[q^6]/(QP[q^2]*QP[q^3])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 23 2015 *)
  • PARI
    {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)*eta(x^6+A)/eta(x^2+A)/eta(x^3+A), n))}

Formula

Euler transform of period 6 sequence [ -1, 0, 0, 0, -1, 0, ...].
G.f.: 1/(Product_{k>0} (1+x^(2k-1)+x^(4k-2))) = Product_{k>0} (1-x^(6k-1))(1-x^(6k-5)) = Product_{k>0} (1-x^k+x^(2k)) (where 1-x+x^2 is 6th cyclotomic polynomial).
Given g.f. A(x), then B(x)=x*A(x^12) satisfies 0=f(B(x), B(x^2), B(x^4)) where f(u, v, w)=(v^2+u^4)*(v^2+w^4)-2*v^4*(1-v*u^2*w^2).
Expansion of G(x^6) * H(x) - x * G(x) * H(x^6) where G(), H() are Rogers-Ramanujan functions.
a(n) = (-1)^n*A098884(n).
a(n) ~ (-1)^n * exp(sqrt(n)*Pi/3) / (2*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
a(n) = -(1/n)*Sum_{k=1..n} A186099(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 26 2017

A281244 Expansion of Product_{k>=1} (1 + x^(6*k-1)).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 2, 3, 1, 0, 0, 0, 3, 4, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 5, 5, 1, 0, 0, 2, 7, 5, 1, 0, 0, 3, 8, 6, 1, 0, 0, 5, 10, 6, 1, 0, 1
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 18 2017

Keywords

Comments

Convolution of this sequence and A280456 is A098884.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          [0$5, 1, 0$4, -1, 1][1+irem(d, 12)]*d, d=
           numtheory[divisors](j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Jan 18 2017
  • Mathematica
    nmax = 200; CoefficientList[Series[Product[(1 + x^(6*k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 0; Do[If[Mod[k, 6] == 5, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly

Formula

a(n) ~ exp(sqrt(n/2)*Pi/3) / (2^(25/12)*sqrt(3)*n^(3/4)) * (1 + (Pi/144 - 9/(4*Pi)) / sqrt(2*n)).
G.f.: Sum_{k>=0} x^(k*(3*k + 2)) / Product_{j=1..k} (1 - x^(6*j)). - Ilya Gutkovskiy, Nov 24 2020

A097451 Number of partitions of n into parts congruent to {2, 3, 4} mod 6.

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 5, 4, 7, 6, 11, 9, 15, 14, 22, 20, 31, 29, 43, 41, 58, 57, 80, 78, 106, 107, 142, 143, 188, 191, 247, 253, 321, 332, 418, 432, 537, 561, 690, 721, 880, 924, 1118, 1178, 1412, 1493, 1781, 1884, 2231, 2370, 2789, 2965, 3472, 3698, 4309, 4596
Offset: 0

Views

Author

Vladeta Jovovic, Aug 23 2004

Keywords

Comments

Number of partitions of n in which no part is 1, no part appears more than twice and no two parts differ by 1. Example: a(6)=3 because we have [6],[4,2] and [3,3]. - Emeric Deutsch, Feb 16 2006
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			a(8)=5 because we have [8],[44],[422],[332] and [2222].
G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 5*x^8 + 4*x^9 + ...
G.f. = q^7 + q^55 + q^79 + 2*q^103 + q^127 + 3*q^151 + 2*q^175 + 5*q^199 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, Exercise 7.9.

Crossrefs

Programs

  • Haskell
    a097451 n = p a047228_list n where
       p _  0         = 1
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 16 2012
    
  • Maple
    g:=1/product((1-x^(2+6*j))*(1-x^(3+6*j))*(1-x^(4+6*j)),j=0..15): gser:=series(g,x=0,75): seq(coeff(gser,x,n),n=0..67); # Emeric Deutsch, Feb 16 2006
  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - Boole[ OddQ[ Quotient[ k + 1, 3]]] x^k, {k, n}], {x, 0, n}]; (* Michael Somos, Sep 24 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^3] QPochhammer[ x^6] / QPochhammer[ x^2], {x, 0, n}]; (* Michael Somos, Sep 24 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - ( (k+1)\3 % 2) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Sep 24 2013 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A)), n))}; /* Michael Somos, Sep 24 2013 */

Formula

Euler transform of period 6 sequence [ 0, 1, 1, 1, 0, 0, ...].
G.f.: 1/Product_{j>=0} ((1-x^(2+6j))(1-x^(3+6j))(1-x^(4+6j))). - Emeric Deutsch, Feb 16 2006
Expansion of psi(x^3) / f(-x^2) in powers of x where psi(), f() are Ramanujan theta functions. - Michael Somos, Sep 24 2013
Expansion of q^(-7/24) * eta(q^6)^2 / (eta(q^2) * eta(q^3)) in powers of q. - Michael Somos, Sep 24 2013
a(n) ~ exp(Pi*sqrt(n/3)) / (4*3^(3/4)*n^(3/4)). - Vaclav Kotesovec, Aug 30 2015
Expansion of f(-x, -x^5) / f(-x, -x^2) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Oct 06 2015

Extensions

More terms from Emeric Deutsch, Feb 16 2006

A280456 Expansion of Product_{k>=0} (1 + x^(6*k+1)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 2, 0, 0, 0, 1, 3, 3, 1, 0, 0, 1, 4, 4, 1, 0, 0, 1, 4, 5, 2, 0, 0, 1, 5, 7, 3, 0, 0, 1, 5, 8, 5, 1, 0, 1, 6, 10, 6, 1, 0, 1, 6, 12, 9, 2, 0, 1, 7, 14, 11, 3, 0, 1, 7, 16, 15, 5, 0, 1, 8, 19, 18, 7, 1, 1, 8, 21, 23, 10, 1, 1, 9, 24
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 03 2017

Keywords

Comments

Number of partitions of n into distinct parts congruent to 1 mod 6.
Convolution of A281244 and A280456 is A098884. - Vaclav Kotesovec, Jan 18 2017

Examples

			a(32) = 3 because we have [31, 1], [25, 7] and [19, 13].
		

Crossrefs

Programs

  • Mathematica
    nmax = 105; CoefficientList[Series[Product[(1 + x^(6 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 6] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* Vaclav Kotesovec, Jan 18 2017 *)

Formula

G.f.: Product_{k>=0} (1 + x^(6*k+1)).
a(n) ~ exp(Pi*sqrt(n)/(3*sqrt(2)))/(2*2^(5/12)*sqrt(3)*n^(3/4)) * (1 + (Pi/(144*sqrt(2)) - 9/(4*sqrt(2)*Pi)) / sqrt(n)). - Ilya Gutkovskiy, Jan 03 2017, extended by Vaclav Kotesovec, Jan 18 2017

A056970 Number of partitions of n into distinct parts congruent to 2, 4 or 5 mod 6.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 11, 13, 13, 15, 16, 17, 20, 21, 23, 25, 27, 30, 33, 36, 38, 42, 45, 49, 54, 57, 62, 67, 72, 79, 85, 92, 98, 106, 114, 123, 133, 141, 152, 163, 175, 189, 202, 216, 231, 248, 265, 284, 304, 323
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n into parts equal to 2,5, or 11 mod 12 (Gollnitz's theorem). Example: a(18)=4 because we have [14,2,2], [11,5,2], [5,5,2,2,2,2] and [2,2,2,2,2,2,2,2,2]. - Emeric Deutsch, Apr 18 2006

Examples

			a(18)=4 because we have [16,2], [14,4], [11,5,2] and [10,8].
		

Crossrefs

Programs

  • Haskell
    a056970 n = p a047261_list n where
       p _  0     = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 16 2012
  • Maple
    g:=product((1+x^(2+6*j))*(1+x^(4+6*j))*(1+x^(5+6*j)),j=0..30): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..67); # Emeric Deutsch, Apr 18 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(irem(d, 12) in [2, 5, 11], d, 0)
          , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Oct 27 2015
  • Mathematica
    max = 70; g[x_] := Product[(1+x^(2+6j))(1+x^(4+6j))(1+x^(5+6j)), {j, 0, Floor[max/6]}]; CoefficientList[ Series[g[x], {x, 0, max}], x](* Jean-François Alcover, Nov 16 2011, after Emeric Deutsch *)
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[If[MatchQ[Mod[d, 12], 2|5|11], d, 0], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Dec 23 2015, after Alois P. Heinz *)
  • PARI
    {a(n)= if(n<0, 0, polcoeff( 1/prod(k=1, n, 1-(k%3==2)*(k%12!=8)*x^k, 1+x*O(x^n)), n))} /* Michael Somos, Jul 24 2007 */
    

Formula

From Emeric Deutsch, Apr 18 2006: (Start)
G.f.: Product_{j >= 0} (1+x^(2+6j))(1+x^(4+6j))(1+x^(5+6j)).
G.f.: 1/Product_{j >= 0} (1-x^(2+12j))(1-x^(5+12j))(1-x^(11+12j)).
(End)
Euler transform of period 12 sequence [ 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, ...]. - Michael Somos, Jul 24 2007
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(25/12) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A096981 Number of partitions of n into parts congruent to {0, 1, 3, 5} mod 6.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 12, 15, 21, 25, 30, 39, 46, 56, 72, 85, 101, 125, 147, 175, 215, 252, 296, 356, 415, 487, 582, 676, 786, 927, 1072, 1244, 1460, 1682, 1939, 2255, 2588, 2976, 3446, 3942, 4510, 5189, 5916, 6751, 7739, 8797, 9999, 11406, 12927, 14657
Offset: 0

Views

Author

Noureddine Chair, Aug 19 2004

Keywords

Comments

Also, number of partitions of n in which the distinct parts are prime to 3 and the unrestricted parts are multiples of 3.
The inverted graded parafermionic partition function. This g.f. is a generalization of A003105, A006950 and A096938

Examples

			a(11) = 15 because we can write 11 = 10+1 = 8+2+1 = 7+4 = 5+4+2 (parts do not contain multiple of 3) = 9+2 = 8+3 = 7+3+1 = 6+5 = 6+4+1 = 6+3+2 = 5+3+3 = 5+3+2+1 = 4+3+3+1 = 3+3+3+2.
1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 10*x^9 + ...
q^-5 + q^19 + q^43 + 2*q^67 + 2*q^91 + 3*q^115 + 5*q^139 + 6*q^163 + 7*q^187 + ...
		

References

  • T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976

Crossrefs

Programs

  • Haskell
    a096981 = p $ tail a047273_list where
       p _  0         = 1
       p ks'@(k:ks) m = if k > m then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)), k=1..150), x=0,100);
  • Mathematica
    CoefficientList[ Series[ Product[ 1/(1 - x^k + x^(2k) - x^(3k) + x^(4k) - x^(5k)), {k, 55}], {x, 0, 53}], x] (* Robert G. Wilson v, Aug 21 2004 *)
    nmax = 100; CoefficientList[Series[x^3*QPochhammer[-1/x^2, x^3] * QPochhammer[-1/x, x^3]/((1 + x)*(1 + x^2) * QPochhammer[x^3, x^3]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / (eta(x + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 08 2012 */
    

Formula

Expansion of q^(5/24) * eta(q^2) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jun 08 2012
Euler transform of period 6 sequence [1, 0, 1, 0, 1, 1, ...]. - Vladeta Jovovic, Aug 20 2004
G.f.: 1/product_{k>=1}(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)) = Product_{k>=1}(1+x^(3*k-1))(1+x^(3*k-2))/(1-x^(3*k)).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(6)*n). - Vaclav Kotesovec, Aug 31 2015

Extensions

Better definition from Vladeta Jovovic, Aug 20 2004
More terms from Robert G. Wilson v, Aug 21 2004
Incorrect b-file replaced by Vaclav Kotesovec, Aug 31 2015

A103260 Number of partitions of 2n prime to 3 with all odd parts occurring with multiplicity 2. The even parts occur with multiplicity 1.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 6, 8, 10, 10, 12, 16, 22, 28, 32, 36, 42, 52, 66, 80, 92, 104, 120, 144, 174, 206, 236, 266, 304, 356, 420, 488, 554, 624, 708, 816, 946, 1084, 1224, 1372, 1548, 1764, 2016, 2288, 2568, 2868, 3216, 3632, 4110, 4626, 5166, 5748, 6412, 7188
Offset: 0

Views

Author

Noureddine Chair, Feb 15 2005

Keywords

Comments

Convolution of A098884 and A003105. [corrected by Vaclav Kotesovec, Feb 07 2021]
Also equal to the number of overpartitions of n into parts congruent to 1 or 5 modulo 6. - Jeremy Lovejoy, Nov 28 2024

Examples

			E.g. a(7)=8 because 14=10+4=10+2+1+1=8+4+2=8+4+1+1=7+7=5+5+4=5+5+2+1+1.
		

Crossrefs

Programs

  • Maple
    series(product(((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))),k=1..100),x=0,100);
    # alternative program:
    with(gfun): series( add(x^(n*(3*n-2)), n = -6..6)/add((-1)^n*x^(n*(3*n-2)), n = -6..6), x, 100): seriestolist(%); # Peter Bala, Feb 05 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 01 2015 *)

Formula

G.f.: (Theta_4(0, x^2)*theta_4(0, x^3))/(theta_4(0, x)*theta_4(0, x^(6))) = Product_{k>0}((1+x^(6*k-1))*(1+x^(6*k-5)))/((1-x^(6*k-1))*(1-x^(6*k-5))).
Euler transform of period 12 sequence [2, -1, 0, 0, 2, 0, 2, 0, 0, -1, 2, 0, ...]. - Vladeta Jovovic, Feb 17 2005
a(n) ~ exp(Pi*sqrt(n/3)) / (2^(3/2) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 01 2015
G.f.: f(x,x^5)/f(-x,-x^5) = ( Sum_{n = -oo..oo} x^(n*(3*n-2)) )/( Sum_{n = -oo..oo} (-1)^n*x^(n*(3*n-2)) ), where f(a,b) = Sum_{n = -oo..oo} a^(n*(n+1)/2)*b^(n*(n-1)/2) is Ramanujan's 2-variable theta function. Cf. A080054 and A098151. - Peter Bala, Feb 05 2021

Extensions

Example corrected by Vaclav Kotesovec, Sep 01 2015

A227398 Expansion of chi(x^3) / chi(x) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -1, 1, -1, 1, -2, 2, -3, 3, -3, 4, -5, 6, -7, 8, -9, 10, -12, 14, -16, 18, -20, 23, -26, 30, -34, 38, -42, 47, -53, 60, -67, 74, -82, 91, -102, 114, -126, 139, -153, 169, -187, 207, -228, 250, -274, 301, -331, 364, -399, 436, -476, 520, -569, 622, -679
Offset: 0

Views

Author

Michael Somos, Sep 20 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - x + x^2 - x^3 + x^4 - 2*x^5 + 2*x^6 - 3*x^7 + 3*x^8 - 3*x^9 + ...
G.f. = 1/q - q^11 + q^23 - q^35 + q^47 - 2*q^59 + 2*q^71 - 3*q^83 + 3*q^95 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - (-x)^k + x^(2 k), {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ 1 - x^k + x^(2 k), {k, 1, n, 2}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 3, n, 6}] / Product[ 1 + x^k, {k, 1, n, 2}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ 1 / (Product[ 1 + x^k, {k, 1, n, 6}] Product[ 1 + x^k, {k, 5, n, 6}]), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ Product[ 1 + (-x)^k, {k, 1, n, 3}] Product[ 1 + (-x)^k, {k, 2, n, 3}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^6] / QPochhammer[ -x, x^2], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2 / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)), n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = x * O(x^n); m = sqrtint(3*n + 1); polcoeff( eta(x^6 + A) / sum(k= -((m-1)\3), (m+1)\3, x^(k * (3*k - 2)), A), n))};

Formula

Expansion of f(-x^6) / f(x, x^5) in powers of x where f(,) is Ramanujan's general theta function.
Expansion of q^(1/12) * eta(q) * eta(q^4) * eta(q^6)^2 / (eta(q^2)^2 * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [-1, 1, 0, 0, -1, 0, -1, 0, 0, 1, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A098884.
G.f.: 1 / Product_{k>0} (1 - (-x)^k + x^(2*k)).
G.f.: Product_{k>0} (1 - x^(2*k - 1) + x^(4*k - 2)).
G.f.: Product_{k>0} ((1 + x^(6*k - 3)) / (1 + x^(2*k - 1))).
G.f.: 1 / Product_{k>0} ((1 + x^(6*k - 1)) * (1 + x^(6*k - 5))).
G.f.: Product_{k>0} (1 + (-x)^(3*k - 1)) * (1 + (-x)^(3*k - 2)).
G.f.: (Sum_{k in Z} (-1)^k * x^(3*k * (3*k-1))) / (Sum_{k in Z} x^(k * (3*k - 2))).
a(n) = (-1)^n * A003105(n). Convolution inverse of A098884.

A284092 Number of partitions of n into distinct parts 8k+1 or 8k+7.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 1, 2, 3, 3, 2, 1, 0, 0, 1, 3, 5, 5, 3, 1, 0, 0, 2, 5, 7, 7, 5, 2, 0, 1, 3, 7, 11, 11, 7, 3, 1, 1, 5, 11, 15, 15, 11, 5, 1, 2, 7, 15, 22, 22, 15, 7, 2, 3, 11, 22, 30, 30, 22, 11, 4, 5, 15, 30, 42, 42
Offset: 0

Views

Author

Seiichi Manyama, Mar 20 2017

Keywords

Comments

Convolution of A284093 and A284095.

Crossrefs

Cf. Product_{k>0} (1 + x^(m*k - 1)) * (1 + x^(m*k - m + 1)): A003105 (m=3), A000700 (m=4), A203776 (m=5), A098884 (m=6), A281459 (m=7), this sequence (m=8).

Programs

  • Mathematica
    CoefficientList[Series[Product[(1 + x^(8*k - 1)) * (1 + x^(8*k - 7)) , {k, 1, 81}], {x, 0, 81}], x] (* Indranil Ghosh, Mar 20 2017 *)
  • PARI
    Vec(prod(k=1, 81, (1 + x^(8*k - 1)) * (1 + x^(8*k - 7))) + O(x^82)) \\ Indranil Ghosh, Mar 20 2017

Formula

G.f.: Product_{k>0} (1 + x^(8*k - 1)) * (1 + x^(8*k - 7)).
a(n) ~ exp(sqrt(n/3)*Pi/2) / (4*3^(1/4)*n^(3/4)) * (1 + (11*Pi/(192*sqrt(3)) - 3*sqrt(3)/(4*Pi))/sqrt(n)). - Vaclav Kotesovec, Mar 20 2017
Showing 1-9 of 9 results.