cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A035294 Number of ways to partition 2n into distinct positive integers.

Original entry on oeis.org

1, 1, 2, 4, 6, 10, 15, 22, 32, 46, 64, 89, 122, 165, 222, 296, 390, 512, 668, 864, 1113, 1426, 1816, 2304, 2910, 3658, 4582, 5718, 7108, 8808, 10880, 13394, 16444, 20132, 24576, 29927, 36352, 44046, 53250, 64234, 77312, 92864, 111322, 133184, 159046
Offset: 0

Views

Author

Keywords

Comments

Also, number of partitions of 2n into odd numbers. - Vladeta Jovovic, Aug 17 2004
This sequence was originally defined as the expansion of sum ( q^n / product( 1-q^k, k=1..2*n), n=0..inf ). The present definition is due to Reinhard Zumkeller. Michael Somos points out that the equivalence of the two definitions follows from Andrews, page 19.
Also, number of partitions of 2n with max descent 1 and last part 1. - Wouter Meeussen, Mar 31 2013

Examples

			a(4)=6 [8=7+1=6+2=5+3=5+2+1=4+3+1=2*4].
G.f. = 1 + x + 2*x^2 + 4*x^3 + 6*x^4 + 10*x^5 + 15*x^6 + 22*x^7 + 46*x^9 + ...
G.f. = q + q^49 + 2*q^97 + 4*q^145 + 6*q^193 + 10*q^241 + 15*q^289 + ...
		

References

  • G. E. Andrews, The Theory of Partitions, Cambridge University Press, 1998, p. 19.

Crossrefs

Programs

  • Haskell
    import Data.MemoCombinators (memo2, integral)
    a035294 n = a035294_list !! n
    a035294_list = f 1 where
       f x = (p' 1 (x - 1)) : f (x + 2)
       p' = memo2 integral integral p
       p _ 0 = 1
       p k m = if m < k then 0 else p' k (m - k) + p' (k + 2) m
    -- Reinhard Zumkeller, Nov 27 2015
  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-2)+`if`(i>n, 0, b(n-i, i))))
        end:
    a:= n-> b(2*n, 2*n-1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 11 2015
  • Mathematica
    Table[Count[IntegerPartitions[2 n], q_ /; Union[q] == Sort[q]], {n, 16}];
    Table[Count[IntegerPartitions[2 n], q_ /; Count[q, _?EvenQ] == 0], {n, 16}];
    Table[Count[IntegerPartitions[2 n], q_ /; Last[q] == 1 && Max[q - PadRight[Rest[q], Length[q]]] <= 1 ], {n, 16}];
    (* Wouter Meeussen, Mar 31 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] /QPochhammer[ x], {x, 0, 2 n}]; (* Michael Somos, May 06 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x^3, x^8] QPochhammer[ -x^5, x^8] QPochhammer[ x^8] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, May 06 2015 *)
    nmax=60; CoefficientList[Series[Product[(1+x^(8*k+1)) * (1+x^(8*k+2))^2 * (1+x^(8*k+3))^2 * (1+x^(8*k+4))^3 * (1+x^(8*k+5))^2 * (1+x^(8*k+6))^2 * (1+x^(8*k+7)) * (1+x^(8*k+8))^3, {k,0,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 06 2015 *)
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-2] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2n, 2n-1]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x^2 + A) / eta(x + A), n))};/* Michael Somos, Nov 01 2005 */
    

Formula

a(n) = A000009(2*n). - Michael Somos, Mar 03 2003
Expansion of Sum_{n >= 0} q^n / Product_{k = 1..2*n} (1 - q^k).
a(n) = T(2*n, 0), T as defined in A026835.
G.f.: Product_{i >= 0} ((1 + x^(8*i + 1)) * (1 + x^(8*i + 2))^2 * (1 + x^(8*i + 3))^2 * (1 + x^(8*i + 4))^3 * (1 + x^(8*i + 5))^2 * (1 + x^(8*i + 6))^2 * (1 + x^(8*i + 7)) * (1 + x^(8*i + 8))^3). - Vladeta Jovovic, Oct 10 2004
G.f.: (Sum_{k>=0} x^A074378(k)) / (Product_{k>0} (1 - x^k)) = f( x^3, x^5) / f(-x, -x^2) where f(, ) is Ramanujan's general theta function. - Michael Somos, Nov 01 2005
Euler transform of period 16 sequence [1, 1, 2, 1, 2, 0, 1, 0, 1, 0, 2, 1, 2, 1, 1, 0, ...]. - Michael Somos, Dec 17 2002
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(11/4) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Oct 06 2015
a(n) = A000041(n) + A282893(n). - Michael Somos, Feb 24 2017
Convolution with A000041 is A058696. - Michael Somos, Feb 24 2017
Convolution with A097451 is A262987. - Michael Somos, Feb 24 2017
G.f.: 1/(1 - x)*Sum_{n>=0} x^floor((3*n+1)/2)/Product_{k = 1..n} (1 - x^k). - Peter Bala, Feb 04 2021
G.f.: Product_{n >= 1} (1 - q^(8*n))*(1 + q^(8*n-3))*(1 + q^(8*n-5))/(1 - q^n). - Peter Bala, Dec 30 2024

A047228 Numbers that are congruent to {2, 3, 4} mod 6.

Original entry on oeis.org

2, 3, 4, 8, 9, 10, 14, 15, 16, 20, 21, 22, 26, 27, 28, 32, 33, 34, 38, 39, 40, 44, 45, 46, 50, 51, 52, 56, 57, 58, 62, 63, 64, 68, 69, 70, 74, 75, 76, 80, 81, 82, 86, 87, 88, 92, 93, 94, 98, 99, 100, 104, 105, 106, 110, 111, 112, 116, 117, 118, 122, 123, 124
Offset: 1

Views

Author

Keywords

Comments

In other words, numbers that are divisible by 2 or by 3, but not by 6 (sorted). - David James Sycamore, Aug 22 2023

Examples

			From _David A. Corneth_, Aug 22 2023: (Start)
10 is in the sequence as 10 == 4 (mod 6) and 4 is in {2, 3, 4}.
11 is not in the sequence as 11 == 5 (mod 6) and 5 is not in {2, 3, 4}. (End)
		

Crossrefs

Programs

  • Haskell
    a047228 n = a047228_list !! (n-1)
    a047228_list = 2 : 3 : 4 : map (+ 6) a047228_list
    -- Reinhard Zumkeller, Feb 19 2013
    
  • Magma
    [n: n in [0..120] | n mod 6 in [2..4]]; // Vincenzo Librandi, Jan 05 2013
    
  • Maple
    A047228:=n->2*n-1-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3): seq(A047228(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
  • Mathematica
    Select[Range[0, 150], MemberQ[{2, 3, 4}, Mod[#, 6]]&] (* Vincenzo Librandi, Jan 06 2013 *)
  • PARI
    a(n) = 6*((n-1)\3) + 2 + (n-1)%3 \\ David A. Corneth, Aug 22 2023
    
  • PARI
    nxt(n) = if(n%3 == 1, n+4, n+1) \\ David A. Corneth, Aug 22 2023

Formula

From Paul Barry, Sep 01 2009: (Start)
G.f.: (2+x+x^2+2*x^3)/(1-x-x^3+x^4).
a(n) = 2*n-1-cos(2*n*Pi/3)+sin(2*n*Pi/3)/sqrt(3). (End) [adapted for offset 1 by Wesley Ivan Hurt, Jun 13 2016]
From Wesley Ivan Hurt, Jun 13 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(3k) = 6k-2, a(3k-1) = 6k-3, a(3k-2) = 6k-4. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*sqrt(3)-3)*Pi/36. - Amiram Eldar, Dec 16 2021
E.g.f.: 2 + exp(x)*(2*x - 1) - exp(-x/2)*(3*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2))/3. - Stefano Spezia, Jul 26 2024

A098884 Number of partitions of n into distinct parts in which each part is congruent to 1 or 5 mod 6.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 3, 3, 2, 1, 1, 3, 5, 5, 3, 1, 2, 5, 7, 7, 5, 3, 3, 7, 11, 11, 7, 4, 6, 11, 15, 15, 11, 7, 8, 15, 22, 22, 15, 10, 13, 22, 30, 30, 23, 16, 18, 30, 42, 42, 31, 22, 27, 43, 56, 56, 44, 33, 37, 57, 77, 77, 59, 45, 53, 79, 101, 101, 82, 64, 71
Offset: 0

Views

Author

Noureddine Chair, Oct 14 2004

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Convolution of A281244 and A280456. - Vaclav Kotesovec, Jan 18 2017

Examples

			E.g. a(25)=5 because 25=19+5+1=17+7+1=13+7+5=13+11+1.
G.f. = 1 + x + x^5 + x^6 + x^7 + x^8 + x^11 + 2*x^12 + 2*x^13 + x^14 + x^16 + ...
G.f. = q + q^13 + q^61 + q^73 + q^85 + q^97 + q^133 + 2*q^145 + 2*q^157 + q^169 + ...
		

Crossrefs

Programs

  • Haskell
    a098884 = p a007310_list where
       p _  0     = 1
       p (k:ks) m = if k > m then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    series(product((1+x^(6*k-1))*(1+x^(6*k-5)),k=1..100),x=0,100);
  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ 1 - (-x)^k + x^(2 k), {k, n}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^k + x^(2 k), {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}] / Product[ 1 + x^k, {k, 3, n, 6}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 6}] Product[ 1 + x^k, {k, 5, n, 6}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / QPochhammer[ -x^3, x^6], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2), n))}; /* Michael Somos, Jun 26 2005 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, A = x * O(x^n); m = sqrtint(3*n + 1); polcoeff( sum(k= -((m-1)\3), (m+1)\3, x^(k * (3*k - 2)), A) / eta(x^6 + A), n))}; /* Michael Somos, Sep 20 2013 */
    

Formula

Expansion of chi(x) / chi(x^3) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Sep 20 2013
Expansion of f(x^1, x^5) / f(-x^6) in powers of x where f(,) is a Ramanujan theta function. - Michael Somos, Sep 20 2013
Expansion of G(x^6) * H(-x) + x * G(-x) * H(x^6) where G() (A003114), H() (A003106) are Rogers-Ramanujan functions.
Expansion of q^(-1/12) * eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ 1, -1, 0, 0, 1, 0, 1, 0, 0, -1, 1, 0, ...]. - Michael Somos, Jun 26 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227398. - Michael Somos, Sep 20 2013
G.f.: Product_{k>0} (1 - (-x)^k + x^(2*k)).
G.f.: 1 / Product_{k>0} (1 - x^(2*k - 1) + x^(4*k - 2)).
G.f.: 1 / Product_{k>0} ((1 + x^(6*k - 3)) / (1 + x^(2*k - 1))).
G.f.: Product_{k>0} ((1 + x^(6*k - 1)) * (1 + x^(6*k - 5))).
G.f.: 1 / Product_{k>0} (1 + (-x)^(3*k - 1)) * (1 + (-x)^(3*k - 2)).
G.f.: (Sum_{k in Z} x^(k * (3*k - 2))) / (Sum_{k in Z} (-1)^k * x^(3*k * (3*k-1))).
A109389(n) = (-1)^n * a(n). Convolution inverse of A227398.
a(n) ~ exp(sqrt(n)*Pi/3)/ (2*sqrt(6)*n^(3/4)) * (1 + (Pi/72 - 9/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 30 2015, extended Jan 18 2017

Extensions

Typo in Maple program fixed by Vaclav Kotesovec, Nov 15 2016

A056970 Number of partitions of n into distinct parts congruent to 2, 4 or 5 mod 6.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 7, 7, 8, 9, 10, 11, 13, 13, 15, 16, 17, 20, 21, 23, 25, 27, 30, 33, 36, 38, 42, 45, 49, 54, 57, 62, 67, 72, 79, 85, 92, 98, 106, 114, 123, 133, 141, 152, 163, 175, 189, 202, 216, 231, 248, 265, 284, 304, 323
Offset: 0

Views

Author

Keywords

Comments

Also number of partitions of n into parts equal to 2,5, or 11 mod 12 (Gollnitz's theorem). Example: a(18)=4 because we have [14,2,2], [11,5,2], [5,5,2,2,2,2] and [2,2,2,2,2,2,2,2,2]. - Emeric Deutsch, Apr 18 2006

Examples

			a(18)=4 because we have [16,2], [14,4], [11,5,2] and [10,8].
		

Crossrefs

Programs

  • Haskell
    a056970 n = p a047261_list n where
       p _  0     = 1
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
    -- Reinhard Zumkeller, Nov 16 2012
  • Maple
    g:=product((1+x^(2+6*j))*(1+x^(4+6*j))*(1+x^(5+6*j)),j=0..30): gser:=series(g,x=0,70): seq(coeff(gser,x,n),n=0..67); # Emeric Deutsch, Apr 18 2006
    # second Maple program:
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(irem(d, 12) in [2, 5, 11], d, 0)
          , d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Oct 27 2015
  • Mathematica
    max = 70; g[x_] := Product[(1+x^(2+6j))(1+x^(4+6j))(1+x^(5+6j)), {j, 0, Floor[max/6]}]; CoefficientList[ Series[g[x], {x, 0, max}], x](* Jean-François Alcover, Nov 16 2011, after Emeric Deutsch *)
    a[n_] := a[n] = If[n==0, 1, Sum[Sum[If[MatchQ[Mod[d, 12], 2|5|11], d, 0], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Dec 23 2015, after Alois P. Heinz *)
  • PARI
    {a(n)= if(n<0, 0, polcoeff( 1/prod(k=1, n, 1-(k%3==2)*(k%12!=8)*x^k, 1+x*O(x^n)), n))} /* Michael Somos, Jul 24 2007 */
    

Formula

From Emeric Deutsch, Apr 18 2006: (Start)
G.f.: Product_{j >= 0} (1+x^(2+6j))(1+x^(4+6j))(1+x^(5+6j)).
G.f.: 1/Product_{j >= 0} (1-x^(2+12j))(1-x^(5+12j))(1-x^(11+12j)).
(End)
Euler transform of period 12 sequence [ 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, ...]. - Michael Somos, Jul 24 2007
a(n) ~ exp(Pi*sqrt(n/6)) / (2^(25/12) * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Aug 30 2015

A096981 Number of partitions of n into parts congruent to {0, 1, 3, 5} mod 6.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 7, 10, 12, 15, 21, 25, 30, 39, 46, 56, 72, 85, 101, 125, 147, 175, 215, 252, 296, 356, 415, 487, 582, 676, 786, 927, 1072, 1244, 1460, 1682, 1939, 2255, 2588, 2976, 3446, 3942, 4510, 5189, 5916, 6751, 7739, 8797, 9999, 11406, 12927, 14657
Offset: 0

Views

Author

Noureddine Chair, Aug 19 2004

Keywords

Comments

Also, number of partitions of n in which the distinct parts are prime to 3 and the unrestricted parts are multiples of 3.
The inverted graded parafermionic partition function. This g.f. is a generalization of A003105, A006950 and A096938

Examples

			a(11) = 15 because we can write 11 = 10+1 = 8+2+1 = 7+4 = 5+4+2 (parts do not contain multiple of 3) = 9+2 = 8+3 = 7+3+1 = 6+5 = 6+4+1 = 6+3+2 = 5+3+3 = 5+3+2+1 = 4+3+3+1 = 3+3+3+2.
1 + x + x^2 + 2*x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 7*x^8 + 10*x^9 + ...
q^-5 + q^19 + q^43 + 2*q^67 + 2*q^91 + 3*q^115 + 5*q^139 + 6*q^163 + 7*q^187 + ...
		

References

  • T. M. Apostol, An Introduction to Analytic Number Theory, Springer-Verlag, NY, 1976

Crossrefs

Programs

  • Haskell
    a096981 = p $ tail a047273_list where
       p _  0         = 1
       p ks'@(k:ks) m = if k > m then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 19 2013
  • Maple
    series(product(1/(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)), k=1..150), x=0,100);
  • Mathematica
    CoefficientList[ Series[ Product[ 1/(1 - x^k + x^(2k) - x^(3k) + x^(4k) - x^(5k)), {k, 55}], {x, 0, 53}], x] (* Robert G. Wilson v, Aug 21 2004 *)
    nmax = 100; CoefficientList[Series[x^3*QPochhammer[-1/x^2, x^3] * QPochhammer[-1/x, x^3]/((1 + x)*(1 + x^2) * QPochhammer[x^3, x^3]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 31 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) / (eta(x + A) * eta(x^6 + A)), n))} /* Michael Somos, Jun 08 2012 */
    

Formula

Expansion of q^(5/24) * eta(q^2) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Jun 08 2012
Euler transform of period 6 sequence [1, 0, 1, 0, 1, 1, ...]. - Vladeta Jovovic, Aug 20 2004
G.f.: 1/product_{k>=1}(1-x^k+x^(2*k)-x^(3*k)+x^(4*k)-x^(5*k)) = Product_{k>=1}(1+x^(3*k-1))(1+x^(3*k-2))/(1-x^(3*k)).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2*sqrt(6)*n). - Vaclav Kotesovec, Aug 31 2015

Extensions

Better definition from Vladeta Jovovic, Aug 20 2004
More terms from Robert G. Wilson v, Aug 21 2004
Incorrect b-file replaced by Vaclav Kotesovec, Aug 31 2015

A262987 Expansion of f(-x, -x^5) * f(x^3, x^5) / f(-x, -x^2)^2 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 1, 3, 6, 11, 19, 33, 53, 86, 134, 205, 309, 460, 672, 974, 1394, 1975, 2773, 3863, 5333, 7316, 9964, 13484, 18140, 24269, 32288, 42751, 56331, 73888, 96503, 125529, 162635, 209939, 270027, 346123, 442213, 563205, 715110, 905361, 1142998, 1439098, 1807175
Offset: 0

Views

Author

Michael Somos, Oct 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + 3*x^2 + 6*x^3 + 11*x^4 + 19*x^5 + 33*x^6 + 53*x^7 + ...
G.f. = q^5 + q^21 + 3*q^37 + 6*q^53 + 11*q^69 + 19*q^85 + 33*q^101 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ x^(-5/8) EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, 2 n}];
    f[x_, y_] := QPochhammer[-x, x*y]*QPochhammer[-y, x*y]*QPochhammer[x*y, x*y]; a:= CoefficientList[Series[f[-x, -x^5]*f[x^3, x^5]/f[-x, -x^2]^2, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jul 31 2018 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( eta(x + A) * eta(x^12 + A)^2 / (eta(x^2 + A)^2 * eta(x^6 + A)), n))};

Formula

Expansion of (psi(x^6) / psi(x) + psi(x^6) / psi(-x)) / 2 in powers of x^2 where psi() is a Ramanujan theta function.
Euler transform of period 48 sequence [1, 2, 3, 2, 2, 0, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 2, 3, 1, 1, 0, 1, 1, 3, 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 0, 2, 2, 3, 2, 1, 0, ...].
a(n) = A132217(2*n) = A262160(2*n).
Convolution product of A035294 and A097451.
a(n) ~ exp(sqrt(n)*Pi)/(8*sqrt(6)*n^(3/4)). - Vaclav Kotesovec, Oct 06 2015

A233006 Expansion of psi(x) / f(-x^6) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 3, 2, 0, 3, 1, 0, 5, 3, 0, 5, 2, 0, 8, 5, 0, 8, 4, 0, 12, 7, 0, 12, 6, 0, 19, 11, 0, 19, 9, 0, 27, 15, 0, 28, 14, 0, 39, 22, 0, 41, 20, 0, 55, 31, 0, 58, 29, 0, 77, 43, 0, 82, 41, 0, 106, 58, 0, 113, 57, 0, 145, 80, 0, 156
Offset: 0

Views

Author

Michael Somos, Dec 03 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + x + x^3 + 2*x^6 + x^7 + x^9 + x^10 + 3*x^12 + 2*x^13 + 3*x^15 + ...
G.f. = q + q^9 + q^25 + 2*q^49 + q^57 + q^73 + q^81 + 3*q^97 + 2*q^105 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)] / (2 x^(1/8) QPochhammer[ x^6]), {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / (eta(x + A) * eta(x^6 + A)), n))};

Formula

Expansion of q^(-1/8) * eta(q^2)^2 / (eta(q) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 1, -1, 1, -1, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (1152 t)) = (3/2)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A070047.
G.f.: Product_{k>0} (1 + x^k) / (1 + x^(2*k) + x^(4*k)).
a(3*n) = A070047(n). a(3*n + 1) = A097451(n). a(3*n + 2) = 0.

A262146 Expansion of f(-x, -x^5) * f(x, x^7) / f(-x, -x^2)^2 in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 2, 4, 8, 15, 25, 42, 68, 107, 166, 253, 377, 557, 811, 1166, 1661, 2344, 3275, 4543, 6253, 8544, 11600, 15653, 20994, 28011, 37178, 49100, 64550, 84489, 110115, 142951, 184867, 238196, 305844, 391391, 499244, 634865, 804925, 1017610, 1282957, 1613195
Offset: 0

Views

Author

Michael Somos, Oct 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 25*x^5 + 42*x^6 + 68*x^7 + ...
G.f. = q^13 + 2*q^29 + 4*q^45 + 8*q^61 + 15*q^77 + 25*q^93 + 42*q^109 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ - x^(-5/8) EllipticTheta[ 2, 0, x^3] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, 2 n + 1}];
  • PARI
    {a(n) = my(A); if( n<0, 0, n = 2*n + 1; A = x * O(x^n); polcoeff( - eta(x + A) * eta(x^12 + A)^2 / (eta(x^2 + A)^2 * eta(x^6 + A)), n))};

Formula

Expansion of - (psi(x^6) / psi(x) - psi(x^6) / psi(-x)) / (2 * x) in powers of x^2 where psi() is a Ramanujan theta function.
Euler transform of period 48 sequence [ 2, 1, 2, 2, 1, 1, 2, 1, 3, 2, 1, 1, 1, 1, 3, 1, 2, 0, 1, 2, 2, 2, 2, 0, 2, 2, 2, 2, 1, 0, 2, 1, 3, 1, 1, 1, 1, 2, 3, 1, 2, 1, 1, 2, 2, 1, 2, 0, ...].
a(n) = A132217(2*n + 1) = - A262160(2*n + 1).
Convolution product of A097451 and A078408.
a(n) ~ exp(Pi*sqrt(n)) / (2^(7/2) * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Mar 31 2018
Showing 1-8 of 8 results.