A098884 Number of partitions of n into distinct parts in which each part is congruent to 1 or 5 mod 6.
1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 2, 2, 1, 0, 1, 2, 3, 3, 2, 1, 1, 3, 5, 5, 3, 1, 2, 5, 7, 7, 5, 3, 3, 7, 11, 11, 7, 4, 6, 11, 15, 15, 11, 7, 8, 15, 22, 22, 15, 10, 13, 22, 30, 30, 23, 16, 18, 30, 42, 42, 31, 22, 27, 43, 56, 56, 44, 33, 37, 57, 77, 77, 59, 45, 53, 79, 101, 101, 82, 64, 71
Offset: 0
Keywords
Examples
E.g. a(25)=5 because 25=19+5+1=17+7+1=13+7+5=13+11+1. G.f. = 1 + x + x^5 + x^6 + x^7 + x^8 + x^11 + 2*x^12 + 2*x^13 + x^14 + x^16 + ... G.f. = q + q^13 + q^61 + q^73 + q^85 + q^97 + q^133 + 2*q^145 + 2*q^157 + q^169 + ...
Links
- Reinhard Zumkeller and Vaclav Kotesovec, Table of n, a(n) for n = 0..20000 (terms 0..300 from Reinhard Zumkeller)
- Noureddine Chair, Partition Identities From Partial Supersymmetry, arXiv:hep-th/0409011v1, 2004.
- David J. Hemmer, Generating functions for fixed points of the Mullineux map, arXiv:2402.03643 [math.CO], 2024.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Haskell
a098884 = p a007310_list where p _ 0 = 1 p (k:ks) m = if k > m then 0 else p ks (m - k) + p ks m -- Reinhard Zumkeller, Feb 19 2013
-
Maple
series(product((1+x^(6*k-1))*(1+x^(6*k-5)),k=1..100),x=0,100);
-
Mathematica
a[ n_] := SeriesCoefficient[ Product[ 1 - (-x)^k + x^(2 k), {k, n}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *) a[ n_] := SeriesCoefficient[ 1 / Product[ 1 - x^k + x^(2 k), {k, 1, n, 2}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *) a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 2}] / Product[ 1 + x^k, {k, 3, n, 6}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *) a[ n_] := SeriesCoefficient[ Product[ 1 + x^k, {k, 1, n, 6}] Product[ 1 + x^k, {k, 5, n, 6}], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^6] QPochhammer[ -x^5, x^6], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *) a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] / QPochhammer[ -x^3, x^6], {x, 0, n}]; (* Michael Somos, Sep 20 2013 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2), n))}; /* Michael Somos, Jun 26 2005 */
-
PARI
{a(n) = my(A, m); if( n<0, 0, A = x * O(x^n); m = sqrtint(3*n + 1); polcoeff( sum(k= -((m-1)\3), (m+1)\3, x^(k * (3*k - 2)), A) / eta(x^6 + A), n))}; /* Michael Somos, Sep 20 2013 */
Formula
Expansion of chi(x) / chi(x^3) in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Sep 20 2013
Expansion of f(x^1, x^5) / f(-x^6) in powers of x where f(,) is a Ramanujan theta function. - Michael Somos, Sep 20 2013
Expansion of G(x^6) * H(-x) + x * G(-x) * H(x^6) where G() (A003114), H() (A003106) are Rogers-Ramanujan functions.
Expansion of q^(-1/12) * eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6)^2) in powers of q.
Euler transform of period 12 sequence [ 1, -1, 0, 0, 1, 0, 1, 0, 0, -1, 1, 0, ...]. - Michael Somos, Jun 26 2005
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A227398. - Michael Somos, Sep 20 2013
G.f.: Product_{k>0} (1 - (-x)^k + x^(2*k)).
G.f.: 1 / Product_{k>0} (1 - x^(2*k - 1) + x^(4*k - 2)).
G.f.: 1 / Product_{k>0} ((1 + x^(6*k - 3)) / (1 + x^(2*k - 1))).
G.f.: Product_{k>0} ((1 + x^(6*k - 1)) * (1 + x^(6*k - 5))).
G.f.: 1 / Product_{k>0} (1 + (-x)^(3*k - 1)) * (1 + (-x)^(3*k - 2)).
G.f.: (Sum_{k in Z} x^(k * (3*k - 2))) / (Sum_{k in Z} (-1)^k * x^(3*k * (3*k-1))).
a(n) ~ exp(sqrt(n)*Pi/3)/ (2*sqrt(6)*n^(3/4)) * (1 + (Pi/72 - 9/(8*Pi)) / sqrt(n)). - Vaclav Kotesovec, Aug 30 2015, extended Jan 18 2017
Extensions
Typo in Maple program fixed by Vaclav Kotesovec, Nov 15 2016
Comments